
Math 314/814: Matrix Theory Dr. S. Cooper, Fall 2008

Homework Solutions – Week of November 11

Section 6.2:

(3) Let c1, c2, c3, c4 be scalars such that

c1

 −1 1

−2 2

 + c2

 3 0

1 1

 + c3

 0 2

−3 1

 + c4

 −1 0

−1 7

 =

 0 0

0 0

 .

Comparing entries of the matrices, this leads to the linear system of equations:

−c1 + 3c2 − c4 = 0

c1 + 2c3 = 0

−2c1 + c2 − 3c3 − c4 = 0

2c1 + c2 + c3 + 7c4 = 0

We form the associated augmented matrix and row-reduce:
−1 3 0 −1 | 0

1 0 2 0 | 0

−2 1 −3 −1 | 0

2 1 1 7 | 0

 −→


1 0 0 4 | 0

0 1 0 1 | 0

0 0 1 −2 | 0

0 0 0 0 | 0

 .

We see that there is a free variable, and so we conclude that the given matrices are

linearly dependent. To find a dependence relation we need to solve the system. Let

c4 = t. Then c3 = 2t, c2 = −t and c1 = −4t. Letting t = 1 and subbing in for the

scalars in the initial matrix equation we see that −1 0

−1 7

 = 4

 −1 1

−2 2

 +

 3 0

1 1

− 2

 −1 0

−1 7

 .

(5) Suppose we have scalars c1 and c2 such that

c1(x) + c2(1 + x) = 0 + 0x.

By rearranging this is equivalent to

c2 + (c1 + c2)x = 0 + 0x.

Comparing coefficients we see that c2 = 0 and hence c1 = 0. Thus, the given polyno-

mials are linearly independent.
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(6) Suppose we have scalars c1, c2 and c3 such that

c1(1 + x) + c2(1 + x2) + c3(1− x + x2) = 0 + 0x + 0x2.

By rearranging this is equivalent to

(c1 + c2 + c3) + (c1 − c3)x + (c2 + c3)x2 = 0 + 0x + 0x2.

Comparing coefficients we obtain the linear system of equations

c1 + c2 + c3 = 0

c1 − c3 = 0

c2 + c3 = 0

We form the associated augmented matrix and row-reduce:
1 1 1 | 0

1 0 −1 | 0

0 1 1 | 0

 −→


1 0 0 | 0

0 1 0 | 0

0 0 1 | 0

 .

Since there are no free variables, we have only the trivial solution c1 = c2 = c3 = 0.

Therefore, the given polynomials are linearly independent.

(10) The only scalars which solve the linear combination

c1(1) + c2(sinx) + c2(cos x) = 0

are c1 = c2 = c3 = 0. Thus, the given functions are linearly independent.

(11) Using the trig identity sin2 x + cos2 x = 1, we have the linear combination

1− sin2 x− cos2 x = 0.

Therefore, the given functions are linearly dependent. One possible linear dependence

relation is

1 = sin2 x + cos2 x.

(17) (a) The set {u,+v,v + w,u + w} is linearly independent. To see this, suppose we

have scalars c1, c2 and c3 such that

c1(u,+v) + c2(v + w) + c3(u + w) = 0.
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Rearranging this equation we obtain

(c1 + c3)u + (c1 + c2)v + (c2 + c3)w = 0.

Since {u,v,w} is a linearly independent set we must have the linear system:

c1 + c3 = 0

c1 + c2 = 0

c2 + c3 = 0

We form the associated augmented matrix and row-reduce:
1 0 1 | 0

1 1 0 | 0

0 1 1 | 0

 −→


1 0 0 | 0

0 1 0 | 0

0 0 1 | 0

 .

Since there are no free variables, we have only the trivial solution c1 = c2 = c3 =

0.

(b) No, the set {u− v,v−w,u−w} does not have to be linearly independent. For

example, let V = R3 and let u = e1,v = e2 and w = e3. Then

u− v =


1

−1

0

 , v −w =


0

1

−1

 , u−w =


1

0

−1

 .

Observe the dependence relation

u−w = (u− v) + (v −w).

(19) Let c1, c2, c3, c4 be scalars such that

c1

 1 0

0 1

 + c2

 0 −1

1 0

 + c3

 1 1

1 1

 + c4

 1 1

1 −1

 =

 0 0

0 0

 .

Comparing entries of the matrices, this leads to the linear system of equations:

c1 + c3 + c4 = 0

−c2 + c3 + c4 = 0

c2 + c3 + c4 = 0

c1 + c3 − c4 = 0
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We form the associated augmented matrix and row-reduce:
1 0 1 1 | 0

0 −1 1 1 | 0

0 1 1 1 | 0

1 0 1 −1 | 0

 −→


1 0 0 0 | 0

0 1 0 0 | 0

0 0 1 0 | 0

0 0 0 1 | 0

 .

Thus, c1 = c2 = c3 = c4 = 0. That is, the matrices in B are linearly independent.

Since dim(M22) = 4 and B consists of 4 linearly independent matrices in M22, Theorem

6.10 (c) says that B is a basis for M22.

(22) Suppose that c1, c2, c3 are scalars such that

c1x + c2(1 + x) + c3(x− x2) = 0 + 0x + 0x2.

Rearranging we see that this equation is equivalent to

c2 + (c1 + c2 + c3)x− c3x
2 = 0 + 0x + 0x2.

Comparing coefficients we see immediately that c2 = c3 = 0. This implies that c1 = 0.

Thus, the polynomials in B are linearly independent. Since dim(P2) = 3 and B consists

of 3 linearly independent polynomials in P2, Theorem 6.10 (c) says that B is a basis

for P2.

(23) Suppose that c1, c2, c3 are scalars such that

c1(1− x) + c2(1− x2) + c3(x− x2) = 0 + 0x + 0x2.

Rearranging we see that this equation is equivalent to

(c1 + c2) + (−c1 + c3)x + (−c2 − c3)x2 = 0 + 0x + 0x2.

Comparing coefficients this gives the linear system

c1 + c2 = 0

−c1 + c3 = 0

−c2 − c3 = 0

We form the augmented matrix and row-reduce:
1 1 0 | 0

−1 0 1 | 0

0 −1 −1 | 0

 −→


1 0 −1 | 0

0 1 1 | 0

0 0 0 | 0

 .
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Since there are free variables, we see that the polynomials in B are not linearly inde-

pendent. In fact, if we solve the system for c1, c2, c3, we see that

x− x2 = −(1− x) + (1− x2).

Therefore, B is not a basis for P2.

(27) We want to find scalars c1, c2, c3 and c4 such that

c1

 1 0

0 0

 + c2

 1 1

0 0

 + c3

 1 1

1 0

 + c4

 1 1

1 1

 =

 1 2

3 4

 .

Comparing corresponding entries, this gives the linear system:

c1 + c2 + c3 + c4 = 1

c2 + c3 + c4 = 2

c3 + c4 = 3

c4 = 4

We form the augmented matrix and row-reduce:
1 1 1 1 | 1

0 1 1 1 | 2

0 0 1 1 | 3

0 0 0 1 | 4

 −→


1 0 0 0 | −1

0 1 0 0 | −1

0 0 1 0 | −1

0 0 0 1 | 4

 .

We conclude that c1 = c2 = c3 = −1 and c4 = 4. Thus,

[A]B =


−1

−1

−1

4

 .

(29) We want to find scalars c1, c2 and c3 such that

c1(1) + c2(1 + x) + c3(−1 + x2) = 2− x + 3x2.

Rearranging this is equivalent to the equation

(c1 + c2 − c3) + c2x + c3x
2 = 2− x + 3x2.
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Comparing coefficients, we obtain the linear system

c1 + c2 − c3 = 2

c2 = −1

c3 = 3

This has the solution c1 = 6, c2 = −1 and c3 = 3. Therefore,

[p(x)]B =


6

−1

3

 .

(35) Note that

V = {p(x) ∈ P2 : p(1) = 0}

= {p(x) = a + bx + cx2 ∈ P2 : p(1) = 0}

= {p(x) = a + bx + cx2 ∈ P2 : a + b + c = 0}

= {p(x) = a + bx + (−a− b)x2 ∈ P2}

= {p(x) = a(1− x2) + b(x− x2) ∈ P2}

= span(1− x2, x− x2)

We now verify that our spanning polynomials are also linearly independent. So,

suppose we have scalars c1 and c2 such that

c1(1− x2) + c2(x− x2) = 0 + 0x + 0x2.

Equivalently,

c1 + c2x + (−c1 − c2)x2 = 0 + 0x + 0x2.

Comparing coefficients, we see that c1 = c2 = 0. Thus,

B = {1− x2, x− x2}

is a basis for V . Thus, dim(V ) = 2.

(39) Note that

 a b

c d

 is in V if and only if

 a b

c d

 1 1

0 1

 =

 1 1

0 1

 a b

c d


6



which is true if and only if a (a + b)

c (c + d)

 =

 (a + c) (b + d)

c d

 .

Comparing entries of the matrices, we must have c = 0 and a = d. So,

V =


 a b

0 a

 : a, d ∈ R


=

a

 1 0

0 1

 + b

 0 1

0 0

 : a, b ∈ R


= span

 1 0

0 1

 ,

 0 1

0 0


We now verify that the above two matrices that span V are also linearly independent.

Suppose we have scalars c1 and c2 such that

c1

 1 0

0 1

 + c2

 0 1

0 0

 =

 0 0

0 0

 .

Comparing entries we see that c1 = c2 = 0. Thus,

B =


 1 0

0 1

 ,

 0 1

0 0


is a basis for V . Thus, dim(V ) = 2.

(45) We need to find a polynomial f(x) in P2 which makes the set {1+x, 1+x+x2, f(x)}
linearly independent. Let f(x) = 1. If c1, c2, c3 are scalars such that

c1(1 + x) + c2(1 + x + x2) + c3(1) = 0 = 0x + ox2

then

c1 + c2 + c3 = 0

c1 + c2 = 0

c2 = 0

This system has only the trivial solution c1 = c2 = c3 = 0. Thus, the set B =

{1 + x, 1 + x + x2, 1} is linearly independent. Since dim(P2) = 3 and B consists of

three linearly independent polynomials in P2, Theorem 6.10 (c) implies that B is a

basis for P2.
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(51) Since we already have a spanning set for the subspace, we simply need to throw away

the polynomials which depend on the others. The first two polynomials are not scalar

multiples of one another and so {1− x, x− x2} is a linearly independent set.

Observe that the third and fourth polynomials are linear combinations of the first

two, i.e.,

1− x2 = (1− x) + (x− x2)

1− 2x + x2 = (1− x)− (x− x2)

and so we throw away the third and fourth given polynomials.

Therefore, {1−x, x−x2} is a linearly independent set of vectors that spans the given

subspace. We conclude that {1− x, x− x2} is a basis for the subspace in question.

(53) Since we already have a spanning set for the subspace, we simply need to throw away

the functions which depend on the others. The first two functions are not scalar

multiples of one another and so {sin2 x, cos2 x} is a linearly independent set.

Observe that the third function is a linear combination of the first two via the trig

identity

cos 2x = cos2 x− sin2 x

and so we throw away the third function.

Therefore, {sin2 x, cos2 x} is a linearly independent set of vectors that spans the given

subspace. We conclude that {sin2 x, cos2 x} is a basis for the subspace in question.

Section 6.3:

(2) (a) Observe that

x = 5

 1

0

−

 1

1

 .

Thus,

[x]B =

 5

−1

 .

Similarly,

x = −7

 0

1

 + 2

 2

3

 .
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Thus,

[x]C =

 −7

2

 .

(b) We need to find the coordinate vector of each basis vector in B with respect to

C. We have  1

0

 = −3
2

 0

1

 +
1
2

 2

3


and  1

1

 = −1
2

 0

1

 +
1
2

 2

3

 .

Thus, by definition,

PC←B =

 −3/2 −1/2

1/2 1/2

 .

(c) We have

PC←B[x]B =

 −3/2 −1/2

1/2 1/2

 5

−1

 =

 −7

2

 = [x]C .

(d) We need to find the coordinate vector of each basis vector in C with respect to

B. We have  0

1

 = −

 1

0

 +

 1

1


and  2

3

 = −

 1

0

 + 3

 1

1

 .

Thus, by definition,

PB←C =

 −1 −1

1 3

 .

(e) We have

PB←C [x]C =

 −1 −1

1 3

 −7

2

 =

 5

−1

 = [x]B.
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(3) (a) Observe that

x =


1

0

0

 + 0


0

1

0

−


0

0

1

 .

Thus,

[x]B =


1

0

−1

 .

Similarly,

x =


1

1

1

− 1


0

1

1

−


0

0

1

 .

Thus,

[x]C =


1

−1

−1

 .

(b) We need to find the coordinate vector of each basis vector in B with respect to

C. We have 
1

0

0

 =


1

1

1

−


0

1

1

 + 0


0

0

1


and 

0

1

0

 = 0


1

1

1

 +


0

1

1

−


0

0

1

 .

and 
0

0

1

 = 0


1

1

1

 + 0


0

1

1

 +


0

0

1

 .

Thus, by definition,

PC←B =


1 0 0

−1 1 0

0 −1 1

 .
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(c) We have

PC←B[x]B =


1 0 0

−1 1 0

0 −1 1




1

0

−1

 =


1

−1

−1

 = [x]C .

(d) We need to find the coordinate vector of each basis vector in C with respect to

B. We have 
1

1

1

 =


1

0

0

 +


0

1

0

 +


0

0

1


and 

0

1

1

 = 0


1

0

0

 +


0

1

0

 +


0

0

1

 .

and 
0

0

1

 = 0


1

0

0

 + 0


0

1

0

 +


0

0

1

 .

Thus, by definition,

PB←C =


1 0 0

1 1 0

1 1 1

 .

(e) We have

PB←C [x]C =


1 0 0

1 1 0

1 1 1




1

−1

−1

 =


1

0

−1

 = [x]B.

(9) (a) We have

A = 4

 1 0

0 1

 + 2

 0 1

0 0

 + 0

 0 0

1 0

−

 0 0

0 1

 .

Thus,

[A]B =


4

2

0

−1

 .
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To find [A]C we need to find scalars such that

A = c1

 1 2

0 −1

 + c2

 2 1

1 0

 + c3

 1 1

0 1

 + c4

 1 0

0 1

 .

This leads to the system

c1 + 2c2 + c3 + c4 = 4

2c1 + c2 + c3 = 2

c2 = 0

−c1 + c3 + c4 = −1

This system has solution c1 = 5/2, c2 = 0, c3 = −3 and c4 = 9/2. Thus

[A]C =


5/2

0

−3

9/2

 .

(b) We need to find the coordinate vector of each basis vector in B with respect to

C. To do so we will need to solve 4 systems of equations similar to those in part

(a). We omit the details of the systems here but give the linear combinations

that arise. We have 1 0

0 0

 =
1
2

 1 2

0 −1

 + 0

 2 1

1 0

− 1

 1 1

0 1

 +
3
2

 1 0

0 1


and  0 1

0 0

 = 0

 1 2

0 −1

 + 0

 2 1

1 0

 +

 1 1

0 1

−

 1 0

0 1


and  0 0

1 0

 = −

 1 2

0 −1

 +

 2 1

1 0

 +

 1 1

0 1

− 2

 1 0

0 1


and  0 0

0 1

 = −1
2

 1 2

0 −1

 + 0

 2 1

1 0

 +

 1 1

0 1

− 1
2

 1 0

0 1

 .
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So, by definition,

PC←B =


1/2 0 −1 −1/2

0 0 1 0

−1 1 1 1

3/2 −1 −2 −1/2

 .

(c) We have

PC←B[A]B =


1/2 0 −1 −1/2

0 0 1 0

−1 1 1 1

3/2 −1 −2 −1/2




4

2

0

−1

 =


5/2

0

−3

9/2

 = [A]C .

(d) We need to find the coordinate vector of each basis vector in C with respect to

B. We have 1 2

0 −1

 =

 1 0

0 0

 + 2

 0 1

0 0

 + 0

 0 0

1 0

−

 0 0

0 1


and  2 1

1 0

 = 2

 1 0

0 0

 +

 0 1

0 0

 +

 0 0

1 0

 +

 0 0

0 1


and  1 1

0 1

 =

 1 0

0 0

 +

 0 1

0 0

 + 0

 0 0

1 0

 +

 0 0

0 1


and  1 0

0 1

 =

 1 0

0 0

 + 0

 0 1

0 0

 + 0

 0 0

1 0

 +

 0 0

0 1

 .

So, by definition,

PB←C =


1 2 1 1

2 1 1 0

0 1 0 0

−1 0 1 1

 .

(e) We have

PB←C [A]C =


1 2 1 1

2 1 1 0

0 1 0 0

−1 0 1 1




5/2

0

−3

9/2

 =


4

2

0

−1

 = [A]B.
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(11) (a) Observe that

f(x) = 2(sin x + cos x)− 5 cos x.

Thus,

[f(x)]B =

 2

−5

 .

Similarly,

f(x) = 2(sin x + cos x)− 3 cos x.

Thus,

[f(x)]C =

 2

−3

 .

(b) We need to find the coordinate vector of each basis vector in B with respect to

C. We have

sinx + cos x = 1(sinx) + 1(cos x)

and

cos x = 0(sinx) + 1(cos x).

Thus, by definition,

PC←B =

 1 0

1 1

 .

(c) We have

PC←B[f(x)]B =

 1 0

1 1

 2

−5

 =

 2

−3

 = [f(x)]C .

(d) We need to find the coordinate vector of each basis vector in C with respect to

B. We have

sinx = 1(sinx + cos x)− (cos x)

and

cos x = 0(sinx + cos x) + cos x.

Thus, by definition,

PB←C =

 1 0

−1 1

 .
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(e) We have

PB←C [f(x)]C =

 1 0

−1 1

 2

−3

 =

 2

−5

 = [f(x)]B.

(13) Let B =


 1

0

 ,

 0

1

. Using Example 3.58, we see that the new x′y′-axes for

the plane are

C =


 1/2
√

3/2

 ,

 √
3/2

1/2

 .

To find the x′y′-coordinates, we need to find the matrix PC←B. We see that 1

0

 =
1
2

 1/2
√

3/2

−
√

3
2

 −
√

3/2

1/2


and  0

1

 =
√

3
2

 1/2
√

3/2

 +
1
2

 −
√

3/2

1/2

 .

Thus,

PC←B =

 1/2
√

3/2

−
√

3/2 1/2

 .

(a) We calculate 3

2


C

=

 1/2
√

3/2

−
√

3/2 1/2

 3

2

 =

 3/2 +
√

3

(−3
√

3)/2 + 1


(b) Let x be the vector whose x′y′-coordinates are (4,−4). We want to find [x]B.

We calculate

[x]B = PB←C [x]C = (PC←B)−1

 4

−4

 =

 1/2 −
√

3/2
√

3/2 1/2

 4

−4

 =

 2 + 2
√

3

2
√

3− 2



(14) Let B =


 1

0

 ,

 0

1

. Using Example 3.58, we see that the new x′y′-axes for

the plane are

C =


 −

√
2/2

√
2/2

 ,

 −
√

2/2

−
√

2/2

 .
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To find the x′y′-coordinates, we need to find the matrix PC←B. We see that 1

0

 = − 1√
2

 −
√

2/2
√

2/2

− 1√
2

 −
√

2/2

−
√

2/2


and  0

1

 =
1√
2

 −
√

2/2
√

2/2

− 1√
2

 −
√

2/2

−
√

2/2

 .

Thus,

PC←B =

 −1/
√

2 1/
√

2

−1/
√

2 −1/
√

2

 .

(a) We calculate 3

2


C

=

 −1/
√

2 1/
√

2

−1/
√

2 −1/
√

2

 3

2

 =

 −1/
√

2

−5/
√

2


(b) Let x be the vector whose x′y′-coordinates are (4,−4). We want to find [x]B.

We calculate

[x]B = PB←C [x]C = (PC←B)−1

 4

−4

 =

 −1/
√

2 −1/
√

2

1/
√

2 −1/
√

2

 4

−4

 =

 0

8/
√

2


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