
Math 314/814: Matrix Theory Dr. S. Cooper, Fall 2008

Homework Solutions – Week of November 18

Section 6.3:

(17) The sets B = {1, x−1, (x−1)2} and C = {1, x, x2} are both bases for P2. We need to find [p(x)]B.
Observe that

1 = 1(1) + 0(x− 1) + 0(x− 1)2

x = 1(1) + 1(x− 1) + 0(x− 1)2

x2 = 1(1) + 2(x− 1) + 1(x− 1)2

Thus,

PB←C =
[

[1]B [x]B [x2]B
]

=

 1 1 1
0 1 2
0 0 1

 .

By Theorem 6.12,

[p(x)]B = PB←C [p(x)]C =

 1 1 1
0 1 2
0 0 1

 1
2

−5

 =

 −2
−8
−5

 .

We conclude that the Taylor polynomial of p(x) about a = 1 is

p(x) = −2− 8(x− 1)− 5(x− 1)2.

(18) The sets B = {1, x+2, (x+2)2} and C = {1, x, x2} are both bases for P2. We need to find [p(x)]B.
Observe that

1 = 1(1) + 0(x + 2) + 0(x + 2)2

x = −2(1) + 1(x + 2) + 0(x + 2)2

x2 = 4(1)− 4(x + 2) + (x + 2)2

Thus,

PB←C =
[

[1]B [x]B [x2]B
]

=

 1 −2 4
0 1 −4
0 0 1

 .

By Theorem 6.12,

[p(x)]B = PB←C [p(x)]C =

 1 −2 4
0 1 −4
0 0 1

 1
2

−5

 =

 −23
22
−5

 .

We conclude that the Taylor polynomial of p(x) about a = 1 is

p(x) = −23 + 22(x + 2)− 5(x + 2)2.
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Section 6.4:

(2) T is not a linear transformation. For example,

2T

[
1 1
1 0

]
= 2

[
1 1
0 1

]
=

[
2 2
0 2

]
6= T

(
2

[
1 1
1 0

])
= T

[
2 2
2 0

]
=

[
1 2
0 1

]
.

(3) T is a linear transformation. Let A,C ∈ Mnn and α be a scalar. Then

T (A + C) = (A + C)B = AB + CB = T (A) + T (C)

and
T (αA) = (αA)B = α(AB) = αT (A).

(5) The transformation T : Mnn → R defined by

T (A) = T




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...
an1 an2 · · · ann


 = tr(A) = a11 + a22 + · · ·+ ann

is linear.

Suppose that A = [aij ] and B = [bij ] are both n× n matrices and α is a scalar. Then

T (A + B) = T ([aij + bij ])
= (a11 + b11) + (a22 + b22) + · · ·+ (ann + bnn)
= (a11 + a22 + · · ·+ ann) + (b11 + b22 + · · ·+ bnn)
= tr(A) + tr(B)
= T (A) + T (B)

and

T (αA) = tr(αA)
= αa11 + αa22 + · · ·+ αann

= α(a11 + a22 + · · ·+ ann)
= αtr(A)
= αT (A).
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(7) T is not linear. For example, let

A =
[

1 0
0 1

]
and

B =
[
−1 0

0 −1

]
.

Then

A + B =
[

0 0
0 0

]
.

We see that

T (A) + T (B) = rank(A) + rank(B) = 2 + 2 = 4 6= T (A + B) = rank(A + B) = 0.

(8) T is not linear. For example,

2T (1 + x + x2) = 2(2 + 2x + 2x2)
= 4 + 4x + 4x2

6= T (2(1 + x + x2))
= T (2 + 2x + 2x2)
= 3 + 3x + 3x2.

(16) Using the fact that T is linear, we have

T (6 + x− 4x2) = 6T (1) + 1T (x)− 4T (x2)
= 6(3− 2x) + (4x− x2)− 4(2 + 2x2)
= 10− 8x− 9x2

and

T (a + bx + cx2) = aT (1) + bT (x) + cT (x2)
= a(3− 2x) + b(4x− x2) + c(2 + 2x2)
= (3a + 2c) + (−2a + 4b)x + (−b + 2c)x2

(17) First note that
4− x + 3x2 = 0(1 + x)− 1(x + x2) + 4(1 + x2).

So, using the fact that T is linear, we have

T (4− x + 3x2) = T (0(1 + x)− 1(x + x2) + 4(1 + x2))
= 0T (1 + x)− 1T (x + x2) + 4T (1 + x2)
= 0(1 + x2)− (x− x2) + 4(1 + x + x2)
= 4 + 3x + 5x2

To find T (a + bx + c2) in general, we need to write a + bx + cx2 as a linear combination of 1 + x,
x + x2 and 1 + x2:

a + bx + cx2 = c1(1 + x) + c2(x + x2) + c3(1 + x2)
= (c1 + c3) + (c1 + c2)x + (c2 + c3)x2
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Comparing coefficients this gives the linear system

c1 + c3 = a

c1 + c2 = b

c2 + c3 = c

We form the augmented matrix and row-reduce: 1 0 1 | a
1 1 0 | b
0 1 1 | c

 −→

 1 0 1 | a
0 1 −1 | b− a
0 0 2 | c− b + a

 .

Solving the system, we obtain

c1 =
a + b− c

2

c2 =
−a + b + c

2

c3 =
a− b + c

2

Thus, using the linearity of T , we have

T (a + bx + cx2)

= T

((
a + b− c

2

)
(1 + x) +

(
−a + b + c

2

)
(x + x2) +

(
a− b + c

2

)
(1 + x2)

)
=

(
a + b− c

2

)
T (1 + x) +

(
−a + b + c

2

)
T (x + x2) +

(
a− b + c

2

)
T (1 + x2)

=
(

a + b− c

2

)
(1 + x2) +

(
−a + b + c

2

)
(x− x2) +

(
a− b + c

2

)
(1 + x + x2)

= a + cx +
(

3a− b− c

2

)
x2

(19) Let B = {E11, E12, E21, E22} be the standard basis for M22. Then[
w x
y z

]
= wE11 + xE12 + yE21 + zE22.

Since T : M22 → R, we know that the images of the standard basis vectors are simply real
numbers. Let T (E11) = a, T (E12) = b, T (E21) = c and T (E22) = d where a, b, c and d are real
numbers. Then, by the linearity of T , we have

T

[
w x
y z

]
= T (wE11 + xE12 + yE21 + zE22)

= wT (E11) + xT (E12) + yT (E21) + zT (E22)
= aw + bx + cy + dx

(20) Observe that  0
6

−8

 = 6

 2
1
0

− 4

 3
0
2

 .
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Since

T

 0
6

−8

 = −2 + 2x2

6= 6T

 2
1
0

− 4T

 3
0
2


= 6(1 + x)− 4(2− x + x2)
= −2 + 10x− 4x2

the transformation T with the given properties cannot be linear.

(25) We have

(S ◦ T )
[

2
1

]
= S

(
T

[
2
1

])
= S

[
5

−1

]
=

[
4 −1
0 6

]
and

(S ◦ T )
[

x
y

]
= S

(
T

[
x
y

])
= S

[
2x + y

−y

]
=

[
2x −y
0 2x + 2y

]

Finally, (T ◦ S)
[

x
y

]
is not defined since S

[
x
y

]
is a 2× 2 matrix, but the domain of T is R2.

(29) We have

(S ◦ T )
[

x
y

]
= S

(
T

[
x
y

])
= S

[
x− y

−3x + 4y

]
=

[
4(x− y) + (−3x + 4y)
3(x− y) + (−3x + 4y)

]
=

[
x
y

]
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and

(T ◦ S)
[

x
y

]
= T

(
S

[
x
y

])
= T

[
4x + y
3x + y

]
=

[
(4x + y)− (3x + y)

−3(4x + y) + 4(3x + y)

]
=

[
x
y

]
By definition, since S ◦ T = IR2 and T ◦ S = IR2 , S and T are inverses.

Section 6.5:

(1) (a) (i) Since

T

[
1 2

−1 3

]
=

[
1 0
0 3

]
6=

[
0 0
0 0

]
the given matrix is not in ker(T ).

(ii) Since

T

[
0 4
2 0

]
=

[
0 0
0 0

]
the given matrix is in ker(T ).

(iii) Since

T

[
3 0
0 −3

]
=

[
3 0
0 −3

]
6=

[
0 0
0 0

]
the given matrix is not in ker(T ).

(b) (i) Any matrix in range(T ) must have zeros for the (1,2) and (2,1) entries. Thus, the given
matrix is not in range(T ).

(ii) For the same reason as in (i), the given matrix is not in range(T ).
(iii) Since the (1,2) and (2,1) of the given matrix are 0, this matrix is in range(T ). In fact,

T

[
3 1
1 −3

]
=

[
3 0
0 −3

]
.

(c) We have

ker(T ) =
{[

a b
c d

]
: T

[
a b
c d

]
=

[
0 0
0 0

]}
=

{[
a b
c d

]
:
[

a 0
0 d

]
=

[
0 0
0 0

]}
=

{[
a b
c d

]
: a = d = 0

}
=

{[
0 b
c 0

]}
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and

range(T ) =
{

T

[
a b
c d

]}
=

{[
a 0
0 d

]}
(3) (a) (i) Since

T (1 + x) =
[

0
1

]
6=

[
0
0

]
the given polynomial is not in ker(T ).

(ii) Since

T (x− x2) =
[
−1
0

]
6=

[
0
0

]
the given polynomial is not in ker(T ).

(iii) Since

T (1 + x− x2) =
[

0
0

]
the given polynomial is in ker(T ).

(b) (i) Since

T (1 + x− x2) =
[

0
0

]
the given vector is in range(T ).

(ii) Since

T (2 + x− x2) =
[

1
0

]
the given vector is in range(T ).

(iii) Since

T (1 + x) =
[

0
1

]
the given vector is in range(T ).

(c) We have

ker(T ) =
{

a + bx + cx2 : T (a + bx + cx2) =
[

0
0

]}
=

{
a + bx + cx2 :

[
a− b
b + c

]
=

[
0
0

]}
=

{
a + bx + cx2 : a = b, b = −c

}
=

{
a + ax− ax2

}
and

range(T ) =
{
T (a + bx + cx2) : a + bx + cx2 ∈ P2

}
=

{[
a− b
b + c

]}
= R2
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(5) From Exercise 1 we have that

ker(T ) =
{[

0 b
c 0

]}
=

{
c

[
0 0
1 0

]
+ b

[
0 1
0 0

]}
= span

([
0 0
1 0

]
,

[
0 1
0 0

])
Suppose we have scalars c1 and c2 such that

c1

[
0 0
1 0

]
+ c2

[
0 1
0 0

]
=

[
0 0
0 0

]
.

It is easy to see that c1 = c2 = 0. Thus the spanning set is also linearly independent. We conclude
that

B =
{[

0 0
1 0

]
,

[
0 1
0 0

]}
is a basis for ker(T ) and so nullity(T ) = 2.

Similarly,

range(T ) =
{[

a 0
0 d

]}
=

{
a

[
1 0
0 0

]
+ d

[
0 0
0 1

]}
= span

([
1 0
0 0

]
,

[
0 0
0 1

])
Suppose we have scalars c1 and c2 such that

c1

[
1 0
0 0

]
+ c2

[
0 0
0 1

]
=

[
0 0
0 0

]
.

It is easy to see that c1 = c2 = 0. Thus the spanning set is also linearly independent. We conclude
that

B′ =
{[

1 0
0 0

]
,

[
0 0
0 1

]}
is a basis for range(T ) and so rank(T ) = 2.

By the Rank Theorem,

dim(M22) = 4 = 2 + 2 = nullity(T ) + rank(T ).

(7) From Exercise 3, we have that

ker(T ) = {a + ax− ax2} = {a(1 + x− x2)} = span(1 + x− x2).

Thus, since there is only only spanning vector in this case, we see that

B = {1 + x− x2}
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is a basis for ker(T ) and so nullity(T ) = 1.

Since range(T ) = R2, we can take the standard basis

B′ =
{[

1
0

]
,

[
0
1

]}
as a basis for range(T ). We conclude that rank(T ) = 2.

By the Rank Theorem,

dim(P2) = 3 = 1 + 2 = nullity(T ) + rank(T ).

(11) We have

ker(T ) =
{[

a b
c d

]
:
[

a b
c d

] [
1 −1

−1 1

]
=

[
0 0
0 0

]}
=

{[
a b
c d

]
:
[

a− b −a + b
c− d −c + d

]
=

[
0 0
0 0

]}
=

{[
a b
c d

]
: a = b, c = d

}
=

{[
a a
c c

]}
=

{
a

[
1 1
0 0

]
+ c

[
0 0
1 1

]}
= span

([
1 1
0 0

]
,

[
0 0
1 1

])
Furthermore, if c1 and c2 are scalars such that

c1

[
1 1
0 0

]
+ c2

[
0 0
1 1

]
=

[
0 0
0 0

]
then clearly c1 = c2 = 0 which shows that the spanning set is also linearly independent. Thus

B =
{[

1 1
0 0

]
,

[
0 0
1 1

]}
is a basis for ker(T ). Thus, nullity(T ) = 2.

By the Rank Theorem

dim(M22) = 4 = nullity(T ) + rank(T ) = 2 + rank(T ) =⇒ rank(T ) = 4− 2 = 2.

(17) (a) We apply Theorem 6.20 to conclude that the transformation T is not 1-1. To see that
ker(T ) 6= {0} observe that 1 + 2x + x2 6= 0 + 0x + 0x2 and

T (1 + 2x + x2) =

 0
0
0

 .
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(b) Since dim(P2) = 3 = dim(R3) and T is not 1-1, we apply Theorem 6.21 to conclude that T
is also not onto.

(21) The vector space

V = D3 =


 a 0 0

0 b 0
0 0 c


has basis

B =


 1 0 0

0 0 0
0 0 0

 ,

 0 0 0
0 1 0
0 0 0

 ,

 0 0 0
0 0 0
0 0 1


(you should check that these matrices span D3 and are linearly independent). Thus,

dim(D3) = 3 = dim(R3).

By Theorem 6.25, the vector spaces D3 and R3 are isomorphic.

Define the linear transformation T : D3 → R3 by

T

 a 0 0
0 b 0
0 0 c

 =

 a
b
c

 .

Note that

T

 a 0 0
0 b 0
0 0 c

 =

 a
b
c

 =

 0
0
0

 =⇒ a = b = c = 0

and so

ker(T ) =


 0 0 0

0 0 0
0 0 0


which shows that T is 1-1.

Also, if x =

 a
b
c

 is any vector in R3, then

T

 a 0 0
0 b 0
0 0 c

 = x

which shows that range(T ) = R3. Thus, T is onto.

We conclude that T is an isomorphism.

(23) Note that
V = {A ∈ M33 : AT = A}

and
W = {B ∈ M22 : BT = −B}.
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We observe that

V =


 a b c

b e f
c f s


= span

 1 0 0
0 0 0
0 0 0

 ,

 0 1 0
1 0 0
0 0 0

 ,

 0 0 1
0 0 0
1 0 0

 ,

 0 0 0
0 1 0
0 0 0

 ,

 0 0 0
0 0 1
0 1 0

 ,

 0 0 0
0 0 0
0 0 1


It is also easy to see that these spanning matrices are linearly independent, and hence form a basis
for V .

Similarly,

W =


 0 b c
−b 0 f
−c −f 0


= span

 0 1 0
−1 0 0

0 0 0

 ,

 0 0 1
0 0 0

−1 0 0

 ,

 0 0 0
0 0 1
0 −1 0


It is also easy to see that these spanning matrices are linearly independent, and hence form a basis
for W .

We conclude that dim(V ) = 6 and dim(W ) = 3. So, by Theorem 6.25, V and W are not
isomorphic.
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