
Math 314/814: Matrix Theory Dr. S. Cooper, Fall 2008

Homework Solutions – Week of November 25

Section 6.5:

(29) We first show that T is 1-1. By Theorem 6.20, it suffices to show that ker(T ) = {0}.
Let p(x) = a0 + a1x + a2x

2 + · · ·+ anan such that p(x) is in the kernel of T . Then

0 + 0x + 0x2 + · · ·+ 0xn = T (p(x))

= xnp

(
1
x

)
= xn

[
a0 + a1

(
1
x

)
+ a2

(
1
x

)2

+ · · ·+ an

(
1
x

)n
]

= a0x
n + a1x

n−1 + a2x
n−2 + · · ·+ an

Comparing coefficients, we see that a0 = a1 = · · · = an = 0. That is, p(x) is the zero polynomial.
We conclude that ker(T ) = {0}, and so T is 1-1. By Theorem 6.21, T must also be onto.
Therefore, T is an isomorphism.

(31) First recall that C[a, b] denotes the set of all continous functions from [a, b] to R.

Define T : C[0, 1] → C[0, 2] by T (f) = g where g is the function such that g(x) = f
(

x
2

)
.

Let f ∈ C[0, 1] such that T (f) = g is the zero function. Then for all x we have

g(x) = f
(x

2

)
= 0 =⇒ f(x) = 0.

That is, f is the zero function. By Theorem 6.20, we have that T is 1-1.

Now let g ∈ C[0, 2]. Let f ∈ C[0, 1] be the function defined by f(x) = g(2x). Then T (f) = g which
shows that T is also onto.

Since T is an isomorphism, we conclude that C[0, 1] and C[0, 2] are isomorphic.

(33) (a) Let x be in ker(S ◦ T ). Then (S ◦ T )(x) = S(T (x)) = 0. Since S is 1-1, we must have
that T (x) = 0. But, since T is 1-1, we then must have x = 0. Therefore, ker(S ◦ T ) = {0}
showing that S ◦ T is 1-1.

(b) Let x ∈ W . Since S is onto, there exists y ∈ V such that S(y) = x. Also, since T is onto,
there exists m ∈ U such that T (m) = y. So,

(S ◦ T )(m) = S(T (m)) = S(y) = x.

That is, x is in the range of S ◦ T . Since x was arbitrarily chosen, S ◦ T is onto.

(35) (a) Suppose that T is onto. Then range(T ) = W and so rank(T ) = dim(range(T )) = dim(W ).
Thus, by the Rank Theorem

dim(V ) = Rank(T ) + Nullity(T ) = dim(W ) + Nullity(T ).

So, since dim(V ) < dim(W ),

dim(V ) + Nullity(T ) < dim(W ) + Nullity(T ) = dim(V )

implying that Nullity(T ) < 0, a contradiction. We conclude that T cannot be onto.
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(b) Suppose that T is 1-1. Then, ker(T ) = {0} and so Nullity(T ) = dim(ker(T )) = 0. Thus,
by the Rank Theorem,

dim(V ) = Rank(T ) + Nullity(T ) = Rank(T ) = dim(Range(T )).

But, since Range(T ) is a subspace of W , dim(Range(T )) ≤ dim(W ). Putting this together
with the above, we conclude that dim(V ) ≤ dim(W ), a contradition to our assumption.
Therefore, T cannot be 1-1.

(37) First we show that ker(T ) = ker(T 2). To see this, let x ∈ ker(T ). Then

T (x) = 0 =⇒ T (T (x)) = T (0) = 0

which shows that x ∈ ker(T 2) (i.e., ker(T ) is a subset of ker(T 2)). Moreover, by the Rank
Theorem, we have

dim(V ) = Nullity(T ) + Rank(T )
dim(V ) = Nullity(T 2) + Rank(T 2)

Since rank(T ) = rank(T 2) this implies that nullity(T ) = nullity(T 2). Thus, ker(T ) ⊆ ker(T 2)
and dim(ker(T )) = dim(ker(T 2)), which shows that ker(T ) = ker(T 2).

Now let v ∈ range(T ) ∩ ker(T ). Then T (v) = 0 and there exists y ∈ V such that T (y) = v.
Thus,

0 = T (v) = T (T (y)) = T 2(y).

This shows that y ∈ ker(T 2) = ker(T ). Thus, v = T (y) = 0. Observe that since T (0) = 0,
0 ∈ range(T ) ∩ ker(T ).

We conclude that range(T ) ∩ ker(T ) = {0}.

Section 6.6:

(1) We calculate that

T (1) = 0(1)− x

T (x) = 1 + 0x

So,

A = [T ]C←B =
[

[T (1)]C [T (x)]C
]

=
[

0 1
−1 0

]
.

Now T (v) = 2− 4x. We verify this using Theorem 6.26:

[T (v)]C = A[v]B =
[

0 1
−1 0

] [
4
2

]
=

[
2

−4

]
,

i.e., T (v) = 2(1)− 4(x) = 2− 4x.

(2) We calculate that

T (1 + x) = 1− x

T (1− x) = −1− x
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So,

A = [T ]C←B =
[

[T (1 + x)]C [T (1− x)]C
]

=
[

1 −1
−1 −1

]
.

Now v = 4 + 2x = 3(1 + x) + 1(1− x) and T (v) = 2− 4x. We verify this using Theorem 6.26:

[T (v)]C = A[v]B =
[

1 −1
−1 −1

] [
3
1

]
=

[
2

−4

]
,

i.e., T (v) = 2(1)− 4(x) = 2− 4x.

(5) We calculate

T (1) =
[

1
1

]
= e1 + e2

T (x) =
[

0
1

]
= 0e1 + e2

T (x2) =
[

0
1

]
= 0e1 + e2

So,

A = [T ]C←B =
[

[T (1)]C [T (x)]C [T (x2)]C
]

=
[

1 0 0
1 1 1

]
.

Now T (v) =
[

a
a + b + c

]
. We verify this using Theorem 6.26:

[T (v)]C = A[v]B =
[

1 0 0
1 1 1

] a
b
c

 =
[

a
a + b + c

]
,

i.e., T (v) = ae1 + (a + b + c)e2 =
[

a
a + b + c

]
.

(6) We calculate

T (x2) =
[

0
1

]
= −

[
1
0

]
+

[
1
1

]
T (x) =

[
0
1

]
= −

[
1
0

]
+

[
1
1

]
T (1) =

[
1
1

]
= 0

[
1
0

]
+

[
1
1

]
So,

A = [T ]C←B =
[

[T (x2)]C [T (x)]C [T (1)]C
]

=
[
−1 −1 0

1 1 1

]
.

Now T (v) =
[

a
a + b + c

]
. We verify this using Theorem 6.26:

[T (v)]C = A[v]B =
[
−1 −1 0

1 1 1

] c
b
a

 =
[

−c− b
a + b + c

]
,
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i.e., T (v) = (−c− b)
[

1
0

]
+ (a + b + c)

[
1
1

]
=

[
a

a + b + c

]
.

(13) (a) Let f(x) = a sinx + b cos x ∈ W . Then D(f(x)) = f ′(x) = a cos x − b sinx ∈ W . Thus, D
maps W into itself.

(b) We calculate that

D(sinx) = 0(sinx) + cos x

D(cos x) = − sinx + 0 cos x

So,

A = [D]B =
[

[D(sinx)]B [D(cos x)]B
]

=
[

0 −1
1 0

]
.

(c) We have D(f(x)) = f ′(x) = 3 cos x + 5 sinx. We verify this using Theorem 6.26:

[D(f(x))]B = A[f(x)]B =
[

0 −1
1 0

] [
3

−5

]
=

[
5
3

]
,

i.e., D(f(x)) = 5 sinx + 3 cos x.
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