Math 314/814: Matrix Theory Dr. S. Cooper, Fall 2008
Homework Solutions — Week of September 30

Note: The exercises from Section 4.2 should be completed the week of October 7.
Section 4.1:

(5) We have
30 0 2 6
Av=10 1 -2 -1 |=1|-3|=3v.
10 1 1 3

So, by definition, v is an eigenvector of A with eigenvalue A = 3.

(6) We have
01 -1 2 0
Av=111 1 -1 =10]=0v.
1 2 0 —1 0

So, by definition, v is an eigenvector of A with eigenvalue A = 0.

(9) We want to find x # 0 such that Ax = 1x. Equivalently, we want to find x # 0
such that
Ax —1x = (A—-11)x = 0.

So, we need to find the null space of A—11. We form the associated augmented

matrix and row reduce:

[A—I|0]:[j i : 8]%[1 4| 0]‘

Solving the system, we have

null(A—lI):{t[;l] :tER}.

4
Any non-zero multiple of u = [ ] is an eigenvector of A with eigenvalue
1

A = 1. In particular,
Au = 1lu

which shows that u is an eigenvector of A with eigenvalue 1.
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(10) We want to find x # 0 such that Ax = 4x. Equivalently, we want to find x # 0

(11)

such that
Ax —4x = (A—-4)x = 0.

So, we need to find the null space of A—41. We form the associated augmented

matrix and row reduce:
—4 4 0 1 -1 0
[,4_4“0]:[ | ]%[ | ]

Solving the system, we have

null(A—éH):{t[i] :tGR}.

Any mnon-zero multiple of u = [ ] is an eigenvector of A with eigenvalue

A = 4. In particular,

Au = 4u

which shows that u is an eigenvector of A with eigenvalue 4.

We want to find x # 0 such that Ax = —1x. Equivalently, we want to find
x # 0 such that
Ax — (-1)x=(A+D)x=0.

So, we need to find the null space of A+ I. We form the associated augmented

matrix and row reduce:

2 0210 101110
[A+I|0=| -1 21 |0|—1]011]0
202 |0 00071 O
Solving the system, we have
-1
nulllA+1)=qt| -1 | :teR
1



(13)

—1

Any non-zero multiple of u = | —1 | is an eigenvector of A with eigenvalue
1
A = —1. In particular,
Au = —1u

which shows that u is an eigenvector of A with eigenvalue -1.

0

A:

] is the matrix of a reflection F' in the y-axis. The only vectors

(o]

0 0
Vectors of the form u = [ ] are transformed to F(u) = [ ] = lu (i.e.
s s

that F' maps parallel to themselves are vectors of the form

t
these are eigenvectors with eigenvalue 1). Vectors of the form v = [ ] are
0

-1
0

value -1). Therefore, we have the eigenspaces

0
E = span
1
E_ | = span )

] is the matrix of the transformation 7" which stretches by a factor

transformed to F(v) = [ ] = —1v (i.e. these are eigenvectors with eigen-

and

A:

0 3
of 2 horizontally and a factor of 3 vertically. The only vectors that T" maps

0
parallel to themselves are vectors of the form [ ° ] and [ . Vectors of the
0 t

2s

s
form u =
[ 0

] are transformed to T(u) = [
0

] = 2u (i.e. these are eigen-

vectors with eigenvalue 2). Vectors of the form v = [ ] are transformed to

t
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(25)

(26)

o

we have the eigenspaces

] = 3v (i.e. these are eigenvectors with eigenvalue 3). Therefore,

wm(2)

and
0
E3 = span .
([ 1 ])
We first find the eigenvalues for A:
2—A 5
det(A — M) = det ( ) =(2- )\
0 (2—))

The eigenvalues are the roots of (2 — X)? = 0. So, the only eigenvalue of A is
A=2.

To find the eigenspace F,, we need to find the null space of A — 2I. We row

reduce the associated augmented matrix:

[A—2]|O]:[0 51 O].
0010

The solution set is F5. We see that

)

1
and so { [ ] } is a basis for the eigenspace Es.
0

We first find the eigenvalues for A:

1-) 2

det(A — M) = det [
-2 (3=X)

] =(1=XNB=XN)+4=X—4r+T.

The eigenvalues are the roots of A*> — 4\ + 7 = 0. Since there are no real roots

of this polynomial, A has no eigenvalues.



(27) We first find the eigenvalues for A:

1-x 1

L oaly —(1=N1=A)+1=X2—2\+2

det(A — M) = det [

The eigenvalues are the roots of A2 —2X+2 = 0. We see that A has eigenvalues
>\1:1—|—zand>\2:1—z

To find the eigenspace Ej.;, we need to find the null space of A — (1+4)I. We

row reduce the associated augmented matrix:

[A—(l+i)]\0]:[__li _t : glﬁll i 0]'

The solution set is E7.,;. We see that

e[ 1] e[ )

1
and so { [ . ] } is a basis for the eigenspace Ey;.
i

To find the eigenspace E;_;, we need to find the null space of A — (1 —4)I. We

row reduce the associated augmented matrix:

[A—(l—i)]|0]:[_f t : glﬁll = | 0].

The solution set is E;_;. We see that

o[ ([ 2]

1
and so { [ . ] } is a basis for the eigenspace E;_;.
—1

(28) We first find the eigenvalues for A:

2-2) -3

det(A — AI) = det [ . ()

] =2-N(=N+3=N-2\+3.
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The eigenvalues are the roots of A2 —2X+3 = 0. We see that A has eigenvalues

M =1++v2and Ay =1 — /2.

To find the eigenspace E,__ ;, we need to find the null space of A —(1+ V2i)I.

We row reduce the associated augmented matrix:

[A—(14+V2i) | 0] =
1 (=1 —+/2i) | 0
The solution set is F; i We see that

1++/2i
1

EH\@:span( ),

1+/2i
1

and so {

(1—/2i) -3 | 0]_>[

0

} is a basis for the eigenspace | ;.

0

1 (=1-+2i) | 0

| 0

To find the eigenspace E,__s;, we need to find the null space of A— (1 —+/2i)I.

We row reduce the associated augmented matrix:

A—(1-v20)T | 0] =

1 (—1++2i) | 0

The solution set is F,_ 5, We see that

— ]

—1

(1+v/2i) -3 | o]_}[

0

1-v2i || , .
and so ‘ is a basis for the eigenspace E,_ z;.

Section 4.2:

(1) Using cofactor expansion along the first row, we have

11
1 2

5 1
0 2

-0

—_ = O

1 3
5 1| =1
0 2

— 1(2-1)—0+3(5—0)
= 16

5 1
01

1 (=1++v2i) | 0
0

| 0



Using cofactor expansion along the first column, we have

10
11 0 3 0 3
5 1 1 =1 -9
1 2 1 2 11
01 2
= 1(2-1)=5(0—3)+0
= 16
(6) Using cofactor expansion along the first row, we have
1 2 3
5 6 4 6 4 5
4 56| =1 -2
8 9 79 7 8
789

= 1(45 — 48) — 2(36 — 42) + 3(32 — 35)
= 0

Using cofactor expansion along the first column, we have

1 2 3

5 6 2 3 2 3
4 5 6| =1 —4

8 9 8 9 5 6
789

= 1(45 —48) — 4(18 — 24) 4 7(12 — 15)
= 0

(9) Using cofactor expansion along the third row, we have

4 13

13 —4 3 —4
2 -2 4| =1 —(~1) +0

~2 4 2 4 2 -2
1 -1 0

= 1(446)+1(-16—-6)+0
= —12



(13) Starting with cofactor expansion along the third row, we have

1 -1 0 3
10 3
2 5 26
= —-1/2 2 6
0O 100
1 21
1 4 21
2 6 2 6 2 2
= —111 -0 +3
2 1 11 1 2

= —1[(2—12) — 0+ 3(4 — 2)]
= —1(-4)
= 4

(23) We row reduce the given matrix A keeping track of our row operations along

the way:
4 13 [ 1 10
A=| 2 24| — B=| 2 -2 4
1 -1 0 |4 13
(1 -1 0]
— C=10 0 4
0 -3 3|
(1 -1 0]
— D=0 -3 3
(0 0 4|

By Theorem 4.2, we have:
det(B) = —det(A); det(C) = det(B); det(D) = — det(C).
So,

-3 3

det(A) = —det(B) = —det(C) = det(D) =1 0 4

= —12.

(26) We can row reduce the given matrix A with the operation Ry — R3—2R;. This
gives a new matrix B such that det(B) = det(A). Moreover, since the third
row of B is a zero row, det(B) = 0. We conclude that det(A) = 0.

8



(35) By Theorem 4.3,

2a 2b 2c a b c
d e f|=2|d e f|=2(4) =8
g h 1 g h i
(36) By Theorem 4.10,
a d g
h|=4
c f 1
So, by Theorem 4.3,
3a 3d 3g
—b —e —h |=403)(-1)(2) = —24.
2 2f 2i

We again apply Theorem 4.10 to obtain

3a —b 2c
3d —e 2f | =—24.
3g —h 2i
(37) By Theorem 4.3,
d e f a b c
a b cl=—|d e f|=-4
g h 1 g h 1

(40) Observe that we have the following row reductions:

a b ¢ a b ¢ a b c
A=|d e f|—=B=]|2d 2 2f | >C=|2d—3g 2e—3h 2f —3i
g h i g h i g h i

By Theorem 4.3,

det(C) = det(B) = 2det(A) =2(4) = 8.



(45) Using cofactor expansion along the first column of A, we compute

det(A) = k 8 (ko1

= k(k*+7)+ k(—4k — 3)
= K —4k* + 4k

= k(k* — 4k +4)

= k(k—2)*

k+1 1 —k 3 -k 3

By Theorem 4.6, A is invertible if and only if det(A) # 0. We conclude that A
is invertible if and only if k # 0, 2.
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