Math 314/814: Matrix Theory Dr. S. Cooper, Fall 2008
Homework Solutions — Week of October 14

Note: You may not be able to complete the exercises from Section 4.4 until the week

of Oct. 21.

Section 4.3:
(11) (a) The characteristic polynomial of A is
[ 1-n 0 0 0o |
0 1—A 0 0
det(A—AI) = det ( )
1 1 (3—X) 0
9 1 2 (=1-A)

(b) The eigenvalues of A are the roots of det(A — AI) =0: Ay =1, s = 3 and

A3 = —1.

(1—=X2B =) (=1-2))

(c¢) To find a basis for £y, we find the null space of (A — 11):

[A—11]0] =

Thus,

A basis for E; is

000 01]0]
000 010
—
112 010
212 -2 |0
sl
2/3
Ey = span ,
0
1
¢ T B T )
—2/3 0
)| 23 9
o' | 1
1 0
\ L . L d

1

S O O N

o O o O




We repeat the above process to find a basis for Ej, i.e. we find the null

space of (A — 3I):

-2 00 010 110 010
0 -2 0 O 0 010 O 0
[A—3I|0]= | — |
1 10 010 001 -2 10
2 12 4]0 000 010
Thus, o
0
0
FE3 = span
2
1
A basis for Fs is
( [ T )
0
0
2
1
\ L d 7
Finally, to find a basis for £_;, i.e. we find the null space of (A — (—1)I):
[ 2000 ] 0] (1000 0]
020010 010010
[A+1]|0]= —
1140710 001010
212010 0010
Thus, o
0
0
E_1 = span
0
1

A basis for E_; is

= o O O




(d) The algebraic and geometric multiplicities for Ay and A3 are 1. The alge-

braic and geometric multiplicities for \; are both 2.

(a) The characteristic polynomial of A is

RS | 0 |
det(A—AI) = det 0 @=r 1 !
0 0 (1-A) 2
0 0 3 (=)
4-) 1 1
= (A—XNdet| 0 (1-)) 2
0 3 (=)

(b) The eigenvalues of A are the roots of det(A —AI) =0: Ay =4, Ay = 3 and
)\3 = —2.

(c¢) To find a basis for Ey, we find the null space of (A — 41):

(00 1 0 0] (0010 0
00 1 110 000110
[A—47]0] = | — |
00 -3 210 000010
00 3 —41]0 00000
Thus, -
1 0
0 1
E, = span ,
0 0
0 0
A basis for E; is
B N B T )
1 0
0 1
0|0
0 0
\ L . L d 7




We repeat the above process to find a basis for Ej, i.e. we find the null

space of (A — 3I):

1o 1 010 101 010
01 1 1 0 011 1 0
[A—-31|0]= | — |
00 -2 210 001 =110
00 3 -31]0 000 01O
Thus, ) )
-1
-2
E3 = span
1
1
A basis for Fs is
¢ [ T )
—1
-2
1
1
\ d 7

Finally, to find a basis for £_,, i.e. we find the null space of (A — (—2)I):

1 0|0 10| 0
1110 11 1] 0
[A+21]0] = —
003210 003210
3210 0010
Thus, ) )
1/9
—-1/18
E_o = span
—2/3
1
A basis for E_s is
(T T
1/9
—1/18
-2/3
1
L 1)




(d) The algebraic and geometric multiplicities for Ay and A3 are 1. The alge-

braic and geometric multiplicities for \; are both 2.

(17) We first observe that x = vi — vy 4 2v3. So,

1 20 1 20
AQOX = (—g) Vi — (g) Vo + 2(1)20V3

2
= | 2-(1/3)™
2

(18) Since x = vy — va + 2v3, we have

Ax = —§ Vi1 — § Vo —|—2<1) V3.

Thus, as £ — oo, we have

2
AFx — 2vg = | 2

2
(19) (a) By Theorem 3.4 and Theorem 4.10,

det(A— M) = det(A— )T
= det[AT — (AD)7]
= det(A" — A7)
= det(AT — \I)

Since the roots of the characteristic equation give the eigenvalues of a

matrix, A and A" have the same eigenvalues.

(b) Let
11
00|

det(A — AI) = —A(1 — \).

A=

Then

5



It’s easy to verify that the eigenspace Ey of A has basis
—1
. )
10
1 0]

By part (a), AT also has the eigenvalue A = 0. One can check that the

L)

We see that even though A and AT have the same eigenvalue A = 0, the

AT =

eigenspace E, of AT has basis

associated eigenspaces for the two matrices are not the same.

(21) Suppose A?2 = A. Let X be an eigenvalue of A. Then there exists a non-zero

vector x such that Ax = Ax. Thus,
Ax =)dx = Ax=A’x =X Ax = A=0 or )= 1.

Thus, the only possible values for the eigenvalues of A are A =0 or A = 1.

0 00 .
(24) (a) Let A= 0 and B = 0 . One can check that the eigenvalues

of A are A\ =1 and Ay = 0. Also, the eigenvalues of B are #; = 0 and
Ba = 1.
We have

10

A+ B = .
01

The only eigenvalue of A4+ Bis A = 1.
Observe that Ay + ;1 = 04 0 = 0 is not an eigenvalue of A + B.

00
00|

(b) Let A and B be as in part (a). Then

AB =




The only eigenvalue of AB is A = 0.
Observe that A\;32 = (1)(1) =1 is not an eigenvalue of AB.

(c) We are told that Ax = Ax and Bx = ux for some non-zero vector x. Thus,
(A+ B)x =Ax+ Bx = Ax+ ux = (A + p)x

which shows that A\ + p is an an eigenvalue of A 4+ B.

Similarly,
(AB)x = A(Bx) = A(ux) = u(Ax) = pu(Ax) = Aux
which shows that Ay is an eigenvalue of AB.
Section 4.4:
(1) We have
det(A— M) =(4—-AN)(1-X)—=3=X=5A+1%#(1—-N)?=det(B— ).

That is, A and B have different characteristic polynomials. By Theorem 4.22,

A and B are not similar.

(2) We have
det(A— X)) =B —=MN(7T—X) —5=)\—10\+ 16

which does not equal
det(B— M) =(2—A)(6—\) +4 =)\ —8)\+ 16 = det(B — ).

That is, A and B have different characteristic polynomials. By Theorem 4.22,

A and B are not similar.

(5) The eigenvalues of A are \; =4 and A\ = 3.
FE, has basis

FE5 has basis




(6) A has eigenvalues A\ =2, Ay =0, and A3 = —1.

FE5 has basis

FEy has basis

E_4 has basis

FEs has basis

E_5 has basis
0

1
-1

A has eigenvalues A\; =6 and \y = —

3
1
2
-
1
— O—
o
1
1
2.
3
2
3
[
o
1

(9) We first find the charateristic polynomial of A:

—3—-A 4
det(A — AI) = det ( ) =(=3-N1—=XN)+4=2+2\+1.
-1 (1—=X)
The only root of det(A — AI) = 0is A = —1, and so the only eigenvalue of A is
A=—1
To find E_; we solve the system (A — (—=1)I)x =0

[(A+1)[0] = [

—2 4]0
~12 1] 0
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(12)

Solving the system, we see that

)]
)

We see that the algebraic multiplicity of A = —1 is 2, yet the geometric multi-
plicity of A = —1 is dim(F_;) = 1. Thus, A is not diagonalizable (by Theorem
4.27).

So, a basis for F_; is

We begin by finding the characteristic polynomial of A. We have
(1—=X) 0 0
det(A— ) = det 2 (2—=X\) 1
3 0 (1—=2X)
2—-A 1
= (1—X)det ( )
0 (1—=2X)
= (1-N?*2-))

The roots of det(A — AI') = 0 are the eigenvalues of A. Thus, A has eigenvalues
/\1:]_&1'1(:1)\2:2.

To find E; we solve the system (A —1/)x = 0:

00071 O 10010
(A-D)Jj0j=|2 11 |0|—=|011]O0
30010 0001 O
Solving the system, we see that
0
E = span —1
1



(15)

So, a basis for Fj is

0
—1
1
We see that the algebraic multiplicity of \; = 1 is 2, yet the geometric multi-

plicity of \; = 1 is dim(E;) = 1. Thus, A is not diagonalizable (by Theorem
4.27).

We begin by finding the characteristic polynomial of A. We have
[ 2-n 0 0 4
0 2—-A 0
det(A—AI) = det ( )
0 0 (—2—2X) 0
0 0 0 (=2 =)
(2—-2N) 0 0
= (2—X)det 0 (=2—=2X) 0
0 0 (=2—=2X)

(2= 2)%(=2-2)
The roots of det(A — AI) = 0 are the eigenvalues of A. Thus, A has eigenvalues
A1 =2 and Ay = —2.

To find Ey we solve the system (A — 2/)x = 0:

000 4]0 001010
000 O 0 0001 0
(A—21)|0] - e |
000 —4 1] 0 000O0]O
000 —4 10 0000O0]O
Solving the system, we see that

o8 _0_

0 1
Ey = span ,

0 0

0 0




So, a basis for Fs is

1 0
0 1
0l |o
(LO] LO])
To find E_5 we solve the system (A — (—2)])x = 0:
(4004 0] [10017]0]
(A2D) | o] — 0400 0] |0100]0
00001 0 000010
00001/ 0 000010
Solving the system, we see that
01 T
E_5 = span 0 ) 0
1 0
0 1
So, a basis for E_, is
([o] [ -1]
0 0
1] o
\_O 1_)

Since the algebraic multiplicities equal the geometric multiplicities for each of

the eigenvalues of A, we conclude that A is diagonalizable. That is, if we let

20 0 0
02 0 0
D —
00 -2 0
00 0 -2
and _ _
1 0 0 —1
010 0
P=
001 0
000 1




then P~1AP = D.

-1 6
10

Let A =

] . We begin by finding the characteristic polynomial of A:

(—1-)) 6

det(A — M) = det [
1 (=)

] =(=1=XN)(=N)—-6=(A+3)(A—2).

We see that the eigenvalues of A are Ay = —3 and Ay = 2.

The eigenspace E_j is the null space of A + 31:

2
[A+3]]0]:[1

We see that

Thus, F_3 has basis

The eigenspace F5 is the null space of A — 21:
-3 6 0 1 =2 0
[A—2I|0]= | — | .
1 =2 ] 0 0O 0] 0
2
Ey = span .
([ 1 ])
2
) )

We conclude that A is diagonalizable. That is, A = PDP~! where

-3 2
11

We see that

Thus, E5 has basis

P =




and

-3 0
D= .
0 2
Thus,
AIO — (PDP—l)l() — PDlOP—l
s 2] =0 o0 ~1/5 2/5
1 1] o 2w 1/5 3/5
[ -3 2] [59049 o0 ~1/5 2/5
1 1] 0 1024 1/5 3/5
[ 35839 —69630
| 11605 24234
(18) Let A = ) _2 ] . We begin by finding the characteristic polynomial of A:
(4—X) -3
det(A — \) = det R (A=N(2=XN)—=3=(A=5)(A—1).

We see that the eigenvalues of A are Ay =5 and A\ = 1.

The eigenspace Fs is the null space of A — 51:

a—siio=| =3 10] 1310
-1 =30 001 0|

oo (1)
=)

The eigenspace F; is the null space of A — 11:

A—1]0] = 33 10] [r-1]0
-1 10 0 0] 0]

We see that

Thus, E5 has basis



We see that

{8l

We conclude that A is diagonalizable. That is, A = PDP~! where
-3 1
11

-[11]

Since A = PDP~!, we know that A~! = [PDP~ '] = PD"'P~'. So, A=% =
(A—l)ﬁ — P(D_I)GP_I.

Thus, E; has basis

P—

and

Thus,

T 14 1/4
1/4 3/4
=3 fasyt o] -1/4 14
1/4 3/4

—3 1] [1/15625 0] [ —1/4 1/4
11 0 1 1/4 3/4

[ 3907/15625 11718/15265
| 3906/15625 11719/15265

(21) Since the given matrix A is triangular, its eigenvalues are the diagonal entries:

A1 =1and Ay = —1.

14



To find F; we solve the system (A — 1/)x = 0:
0 1 110 0100
(A-=DJoj=|0 -2 0] o0|—=|001]0
0 0 -2 ] 0 00010

Solving the system, we see that

E, =

an
So, a basis for Ej is
1
0
0

1

0 .

0
1))x=0:

Sp
To find E_; we solve the system (A — (—

21 1] 0
(A+I)|0j=1]10 0 0 | O
| 0

Solving the system, we see that

1 1
E_1 = span -2 |, 0
0 -2
So, a basis for E_; is
1 1
-2 1, 0
0 -2

Since the algebraic multiplicities equal the geometric multiplicities for each of

the eigenvalues of A, we conclude that A is diagonalizable. That is, if we let

1 0 0
D=0 -1 0
0 0 -1



and

then P~'AP = D. So,

142002

1 1 1
P=10 -2 0
0 0 -2
PD2002P_1
- 2002
1 0 0
0 -1 0 p!
0 0 —1

(34) Suppose A and B are invertible matrices. Let P = B~!. Then

P Y AB)P = (B Y (AB)B™! = (BA)(BB™') = BAI = BA.

So, by definition, AB and BA are similar matrices.

(37) We first concentrate on the matrix A. We have

det(A—AI) = det

4

(5—=2)
(=2-2)

- ] = (5=A)(=2=A)+12 = (A=2)(A—1).

The eigenvalues of A are \; = 2 and Ay = 1. Since each eigenvalue has both al-

gebraic multiplicity 1, each eigenvalue has geometric multiplicity 1 (by Theorem

4.26). We conclude that A is diagonalizable. So, A is similar to

[0

16



We now repeat this argument on B. We have

(—1-)) 1

det(B—\I) = det
—6 (4—N)

] =(—1=XN)@d-XN)+6=(A=2)(A—1).
The eigenvalues of B are A\; = 2 and Ay = 1. As was the case with A, we have

(1]

Since A and B are similar to the same diagonal matrix D, we must have that
A and B are similar (by Theorem 4.21).

that B is similar to

To find the desired matrix P we need to find the eigenspaces for A and B. Using

the techniques from this section, one finds that A has eigenspaces

o[}
com([2)
1

o[

11
So, B = QDQ~! where Q = [3 2].

and

So, A= SDS™! where S =

Similarly, B has eigenspaces

and

Rearranging the equation A = SDS™! to isolate for D we see that
D= S7'AS.

17



Substituting this into the equation B = QDQ ™!, we have
B=QDQ ' =QS'ASQ".
Now let P = SQ~!. This yields

B =P AP

We conclude that the desired matrix P is
» (1 3] -2 1
P=5Q =
1 4 3 —1

7 -2
10 -3

Let A be an n x n diagonalizable matrix. By Theorem 4.27, we know that the

algebraic and geometric multiplicities for each eigenvalue of A are equal.

We want to show that AT is also diagonalizable. This will follow from a series

of observations.

By Section 4.3, exercise 19, we know that A and AT have the same characteristic
polynomial. This shows that A and A7 have the same eigenvalues with the same
algebraic multiplicities. Let A be an eigenvalue of AT (and hence A). We need
to show that the algebraic multiplicity of A is equal to its geometric multiplicity.
We have two eigenspaces associated to \; one for A and one for AT. Let E)

denote the null space of A — Al and E} denote the null space of AT — AI.

Observe that (A — XI)T = AT — X\I. Thus, by Theorem 3.25,
Rank(AT — \I) = Rank(A — \I)T = Rank(A — \I).
So, by the Rank Theorem,

n = Rank(A" — XI) + Nullity(A" — \I)
n = Rank(A— M)+ Nullity(A — \I)

We conclude that Nullity(AT — X\I) = Nullity(A — XI). That is, dim(E)) =

dim(F}). This shows that the geometric multiplicities are equal for each shared

18



eigenvalue of A and A”. Thus, since the multiplicities are equal for A, the
algebraic and geometric multiplicities for each eigenvalue of AT must be equal.

This shows that AT is diagonalizable.
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