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Using semidualizing complexes to detect Gorenstein rings

Sean Sather-Wagstaff and Jonathan Totushek

Abstract. A result of Foxby states that if there exists a complex with finite
depth, finite flat dimension, and finite injective dimension over a local ring
R, then R is Gorenstein. In this paper we investigate some homological
dimensions involving a semidualizing complex and improve on Foxby’s
result by answering a question of Takahashi and White. In particular, we
prove for a semidualizing complex C, if there exists a complex with finite
depth, finite FC-projective dimension, and finite IC-injective dimension
over a local ring R, then R is Gorenstein.
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1. Introduction. Throughout this paper let R be a commutative noetherian
ring with identity. A result of Foxby states that, if there exists an R-complex
X that has finite flat dimension and finite injective dimension, then Rp is a
Gorenstein ring for all p ∈ suppR(X); see Section 2 for definitions. In this paper
we generalize this theorem using a semidualizing R-module. A finitely gener-
ated R-module C is semidualizing if R ∼= HomR(C,C) and Ext�1

R (C,C) = 0.
Semidualizing modules are useful, e.g., for proving results about Bass numbers
[4,14] and compositions of local ring homomorphisms [4,13].

Takahashi and White [17] define the C-projective dimension for an R-
module M (denoted PC- pdR(M)) to be the length of the shortest resolution
by modules of the form C ⊗R P where P is a projective R-module. They de-
fine C-injective dimension (IC- id) dually. In their investigation Takahashi and
White posed the following question: When R is a local Cohen-Macaulay ring
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admitting a dualizing module and C is a semidualizing R-module, if there ex-
ists an R-module M such that PC- pdR(M) < ∞ and IC- idR(M) < ∞, must
R be Gorenstein? If M has infinite depth, then the answer is false. However,
if we additionally assume that M has finite depth, then an affirmative answer
to this question would yield a generalization of Foxby’s theorem.

Partial answers to Takahashi and White’s question is given by Araya and
Takahashi [1] and Sather-Wagstaff and Yassemi [16]. We give a complete an-
swer to this question in the following result; see Section 2 for background on
complexes and the derived category, and Theorem 3.2 for the proof.

Theorem 1.1. Let C be a semidualizing R-complex. If there exists an R-complex
X ∈ Db(R) such that FC-pdR(X) < ∞ and IC- idR(X) < ∞, then Rp is
Gorenstein for all p ∈ suppR(X).

2. Background. Let D(R) denote the derived category of complexes of R-
modules, indexed homologically (see e.g. [11,12]). A complex X ∈ D(R) is
homologically bounded below, denoted X ∈ D+(R), if Hi(X) = 0 for all i � 0. It
is homologically bounded above, denoted X ∈ D−(R), if Hi(X) = 0 for all i � 0.
It is homologically degreewise finite, denoted X ∈ Df(R), if Hi(X) is finitely
generated for all i. Set Db(R) = D+(R)∩D−(R) and Df

∗(R) = Df(R)∩D∗(R)
for each ∗ ∈ {+,−,b}. Complexes in Df

b(R) are called homologically finite.
Isomorphisms in D(R) are identified by the symbol 
.

For R-complexes X and Y , let inf(X) and sup(X) denote the infimum and
supremum, respectively, of the set {i ∈ Z | Hi(X) = 0} with the conven-
tion sup(∅) = −∞ and inf(∅) = ∞. Let X ⊗L

R Y and RHomR(X,Y ) denote
the left-derived tensor product and right-derived homomorphism complexes,
respectively.

If (R,m, k) is local, the depth and width of an R-complex X ∈ D(R) are
defined by Foxby [7] and Yassemi [19] as

depthR(X) := − sup(RHomR(k,X))

widthR(X) := inf(k ⊗L
R X).

One relation between these quantities is given in the following.
The small support of an R-complex X ∈ D(R) is defined by Foxby [7] as

follows:

suppR(X) :=
{
p ∈ Spec(R) | κ(p) ⊗L

R X �
 0
}

.

An important property of the small support is given in the following.

Fact 2.1 ([7, Proposition 2.7]). If X,Y ∈ D(R), then

suppR

(
X ⊗L

R Y
)

= suppR(X) ∩ suppR(Y ).

The flat dimension of an R-complex X ∈ D+(R) is

fdR(X) := inf
{

n ∈ Z

∣
∣
∣
∣
F

�−→ X where F is a bounded below complex of
flat R-modules such that Fi = 0 for all i > n

}
.
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The injective dimension of an R-complex Y ∈ D−(R) is

idR(X) := inf
{

n ∈ Z

∣
∣
∣
∣
Y

�−→ I where I is a bounded above complex of
injective R-modules such that Ij = 0 for all j > −n

}
.

A homologically finite R-complex C is semidualizing if the homothety mor-
phism χR

C : R → RHomR(C,C) is an isomorphism in D(R). An R-complex D
is dualizing if it is semidualizing and has finite injective dimension. Dualizing
complexes were introduced by Grothendieck and Hartshorne [12], and semidu-
alizing complexes originate in work of Foxby [6], Avramov and Foxby [4], and
Christensen [5]. For the non-commutative case, see, e.g., Araya, Takahashi,
and Yoshino [2].

Assumption 2.2. For the rest of this paper, let C be a semidualizing R-complex.

The following classes were defined in [4,5]. The Auslander Class with re-
spect to C is the full subcategory AC(R) ⊆ Db(R) such that a complex
X is in AC(R) if and only if C ⊗L

R X ∈ Db(R) and the natural morphism
γC
X : X → RHomR(C,C ⊗L

R X) is an isomorphism in D(R). Dually, the Bass
Class with respect to C is the full subcategory BC(R) ⊆ Db(R) such that a
complex Y is in BC(R) if and only if RHomR(C, Y ) ∈ Db(R) and the natural
morphism ξCY : C ⊗L

R RHomR(C, Y ) → Y is an isomorphism in D(R).
The FC-projective dimension and IC-injective dimension of an R-complex

X ∈ Db(R) are defined in [18] as follows:

FC- pdR(X) := sup(C) + fdR(RHomR(C,X))

IC- idR(X) := sup(C) + idR(C ⊗L
R X).

The following fact shows that the above definitions are consistent with the
ones given by Takahashi and White [17] when C is a semidualizing module.

Fact 2.3 ([18, Theorem 3.9]). Let X ∈ Db(R).
(a) We have FC- pdR(X) < ∞ if and only if there exists an R-complex

F ∈ Db(R) such that fdR(F ) < ∞ and X 
 C ⊗L
R F . When these

conditions are satisfied, one has F 
 RHomR(C,X) and X ∈ BC(R).
(b) We have IC- idR(X) < ∞ if and only if there exists an R-complex

J ∈ Db(R) such that idR(J) < ∞ and X 
 RHomR(C, J). When these
conditions are satisfied, one has J 
 C ⊗L

R X and X ∈ AC(R).

3. Results. The next result fully answers the question of Takahashi and White
discussed in the introduction.

Theorem 3.1. Let (R,m, k) be a local ring. If there is an R-complex X ∈
Db(R) with finite depth, FC-pdR(X) < ∞ and IC- idR(X) < ∞, then R is
Gorenstein.

Proof. Case 1:depthR(X) < ∞ and R has a dualizing complex D.
We first observe that by [8, Theorem 4.6] we have that the following:

depthR(RHomR(C,X)) = widthR(C) + depthR(X) < ∞. (3.1.1)

Note that depthR(X) is finite by assumption, and widthR(C) is finite by
Nakayama’s Lemma as C is homologically finite: see [7, Lemma 2.1].
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Set C† := RHomR(C,D). The assumption IC- idR(X) < ∞ with [18, The-
orem 1.2] implies FC†- pdR(X) < ∞. Hence by Fact 2.3(a) there exist R-
complexes F,G of finite flat dimension such that C ⊗L

R F 
 X 
 C† ⊗L
R G.

Since G has finite flat dimension, [5, Proposotion 4.4] implies G ∈ AC†(R),
which explains the first isomorphism in the following display:

G 
 RHomR(C†, C† ⊗L
R G) 
 RHomR(C†, C ⊗L

R F ) 
 RHomR(C†, C) ⊗L
R F.

The last isomorphism is by tensor evaluation [3, Lemma 4.4(F)].
Fact 2.3(a) implies F 
 RHomR(C,X). By (3.1.1) we have depthR(F ) <

∞. It follows from [7, Proposition 2.8] that k⊗L
RF �
 0. For the rest of the proof,

set U := RHomR(C†, C). Since C and C† are in Df
b(R), we have U ∈ Df

−(R).
Claim A: U ∈ Df

b(R).
To prove this claim it suffices to show that U ∈ D+(R). Assume by way of

contradiction that inf(U) = −∞. Then by [8, 4.5] we know that inf(k⊗L
R U) =

−∞. By tensor cancellation and the Künneth formula, we have isomorphisms

Hn

(
k ⊗L

R

(
F ⊗L

R U
)) ∼= Hn

((
k ⊗L

R F
) ⊗L

k

(
k ⊗L

R U
))

∼=
⊕

p+q=n

Hp

(
k ⊗L

R F
) ⊗k Hq

(
k ⊗L

R U
)
.

Since k⊗L
R F �
 0 and inf(k⊗L

R U) = −∞, it follows that inf(k⊗L
R (F ⊗L

R U)) =
−∞. On the other hand, since F ⊗L

RU 
 G ∈ Db(R) we have k⊗L
R (F ⊗L

RU) 

k⊗L

RG ∈ D+(R), so inf(k⊗L
R(F⊗L

RU)) > −∞, a contradiction. This establishes
Claim A.

Claim B: The complex U has finite projective dimension.
To show this claim, assume by way of contradiction that pdR(U) = ∞.

Then because U ∈ Df
b(R) we have sup(k ⊗L

R U) = ∞ by [3, Proposition 5.5].
As in the proof of Claim A, we conclude that sup(k ⊗L

R (F ⊗L
R U)) = ∞. On

the other hand, we have k ⊗L
R (F ⊗L

R U) 
 k ⊗L
R G. Since G has finite flat

dimension, this implies that sup(k ⊗L
R (F ⊗L

R U)) < ∞, a contradiction. This
concludes the proof of Claim B.

Now [10, Theorem 1.4] implies that ΣnC 
 C† = RHomR(C,D) for some
n ∈ Z. Hence by [9, Corollary 3.4] we deduce that R is Gorenstein. This
concludes the proof of Case 1.

Case 2: suppR(X) = {m}.
For the proof of Case 2, first observe that R is Gorenstein if and only if R̂

is Gorenstein. Since R̂ has a dualizing complex, by Case 1 it suffices to show
that
(1) R̂ ⊗L

R X ∈ Db(R̂),
(2) R̂ ⊗L

R C is a semidualizing R̂-complex,
(3) FR̂⊗L

RC- pdR̂(R̂ ⊗L
R X) < ∞,

(4) IR̂⊗L
RC- idR̂(R̂ ⊗L

R X) < ∞, and

(5) depthR̂(R̂ ⊗L
R X) < ∞.

Item (1) follows from the fact that R̂ is flat over R. Items (2) and (3) follow
from [5, Lemma 2.6] and [18, Proposition 3.11], respectively.

Author's personal copy



Vol. 104 (2015) Using semidualizing complexes to detect . . . 527

To prove (4) note that the first equality in the next sequence is by definition:

IR̂⊗L
RC- idR̂

(
R̂ ⊗L

R X
)

= idR̂

((
R̂ ⊗L

R C
)

⊗L
R̂

(
R̂ ⊗L

R X
))

+ sup
(
R̂ ⊗L

R C
)

= idR̂

(
R̂ ⊗L

R

(
C ⊗L

R X
))

+ sup
(
R̂ ⊗L

R C
)

.

The second equality is by tensor cancellation. From the condition IC- idR(X) <
∞, we have idR(C ⊗L

R X) < ∞ by definition. Note that m ∈ Spec(R) =
suppR(C) by [15, Proposition 6.6]. Therefore Fact 2.1 implies

suppR

(
C ⊗L

R X
)

= suppR(C) ∩ suppR(X) = {m}.

Hence by [13, Lemma 3.4] the complex R̂ ⊗L
R (C ⊗L

R X) has finite injective
dimension over R̂, so (4) holds.

For the proof of (5) consider the following sequence:

depthR̂

(
R̂ ⊗L

R X
)

= − sup
(
RHomR̂

(
k, R̂ ⊗L

R X
))

= − sup
(
RHomR̂

(
R̂ ⊗L

R k, R̂ ⊗L
R X

))

= − sup
(
R̂ ⊗L

R RHomR(k,X)
)

= − sup (RHomR(k,X))

= depthR(X)
< ∞.

The second equality is because k ∼= R̂⊗L
R k, and the fourth equality is because

R̂ is faithfully flat over R. This establishes (5) and concludes Case 2.
Case 3: general case.
Let x be a generating sequence for m, and let K = KR(x) be the Koszul

complex. Then suppR(K) = {m}. Since depthR(X) < ∞, we have that m ∈
suppR(X) by [7, Proposition 2.8]. Hence, we conclude from Fact 2.1 that

suppR

(
K ⊗L

R X
)

= suppR(K) ∩ suppR(X) = {m}.

By Case 2 it suffices to show that
(a) depthR(K ⊗L

R X) < ∞,
(b) K ⊗L

R X ∈ Db(R),
(c) FC- pdR(K ⊗L

R X) < ∞, and
(d) IC- idR(K ⊗L

R X) < ∞.
Item (a) follows from [7, Proposition 2.8]. For (b), use the conditions

pdR(K) < ∞ and X ∈ Db(R). Items (c) and (d) follow from [18, Proposi-
tion 4.5 and 4.7]. This concludes the proof of Case 3. �

The following result is Theorem 1.1 from the introduction.

Theorem 3.2. If there is an R-complex X ∈ Db(R) such that FC- pdR(X) < ∞
and IC- idR(X) < ∞, then Rp is Gorenstein for all p ∈ suppR(X).

Proof. By Theorem 3.1 it suffices to show the following:
(i) Xp ∈ Db(Rp),
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(ii) Cp is a semidualizing Rp-complex,
(iii) FCp- pdRp

(Xp) < ∞,
(iv) ICp- idRp(Xp) < ∞, and
(v) depthRp

(Xp) < ∞.

Item (i) follows from the fact that Rp is a flat over R, and item (ii) follows
from [5, Lemma 2.5]. Items (iii) and (iv) are by [18, Corollary 3.12].

(v) As p ∈ suppR(X), we have pRp ∈ suppRp
(Xp) by [15, Proposition 3.6].

Since pRp is the maximal ideal of the local ring Rp, we deduce from [7, Propo-
sition 2.8] that depthRp

(Xp) < ∞. �
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