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Abstract. This is an abstract.

1. Introduction

Throughout this paper, we let H denote a Hilbert space, X a measureable space
and Ω a σ-algebra of subsets of X. By an operator T on H we will always mean a
linear transformation such that the operator norm

‖T‖ := sup{‖Tψ‖ : ψ ∈ H, ‖ψ‖ = 1}

is finite. An operator will be called invertible if it has an algebraic inverse T−1

which is also an operator on H.

1.1. Basic Definitions and Facts.

Definition 1.1. The spectrum of a linear operator T on H is

spec(T ) = {λ ∈ C : T − λ is not invertible. }.(1)

The approximate point spectrum of T is

aspec(T ) = {λ ∈ C : ̺(T − λ) = 0}, where ̺(T ) = inf{‖Tψ‖ : ψ ∈ H, ‖ψ‖ = 1}.

(2)

Theorem 1.1. aspec(T ) ⊂ spec(T ).

Theorem 1.2. If T is a normal operator, then aspec(T ) = spec(T ).

Theorem 1.3 (Transforms of Spectra).

(i) If p ∈ C[x], then

spec(p(T )) = p(spec(T )) := {p(λ) : λ ∈ spec(T )}.

(ii) If T is invertible, then

spec(T−1) = (spec(T ))−1 := {λ−1 : λ ∈ spec(T )}.

(iii) The spectrum of the adjoint of T satisfies

spec(T ∗) = (spec(T ))∗ := {λ∗ : λ ∈ spec(T )}.

Theorem 1.4. Define

NT (f) = sup{|f(λ)| : λ ∈ spec(T )}.(3)

In general, spec(T ) is a compact subset of the complex plane and NT (x) ≤ ‖T‖.
If T is Hermitian, then spec(T ) is a subset of R and NT (p(x)) = ‖p(T )‖ for any
polynomial p ∈ R[x].
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2. Spectral Measures

Definition 2.1. A spectral measure E on a measureable space (X,Ω) is a
projection-valued (idempotent, hermitian) set function

E : Ω → { projections on H}

satisfying

(i) E(X) = 1;
(ii) for any collection of pairwise disjoint sets {Ak}

∞
k=1,

E

(

∞
⋃

k=1

Ak

)

=

∞
∑

k=1

E(Ak).

Theorem 2.1 (Properties of Spectral measures). If E is a spectral measure, then
for all A,B ∈ Ω

(i) if A ⊂ B, then E(A) ≤ E(B);
(ii) if A ⊂ B, then E(B \A) = E(B) − E(A);
(iii) E(A ∪ B) + E(A ∩ B) = E(A) + E(B);
(iv) E(A ∩ B) = E(A)E(B).

Theorem 2.2. A function

E : Ω → { projections on H}

is a spectral measure if and only if

(i) E(X) = 1;
(ii) for any two fixed elements ψ, φ ∈ H,the function µ : Ω → C defined by

µ(A) = 〈E(A)ψ, φ〉 for all A ∈ Ω

is a complex measure. We use the notation d〈E(λ)ψ, φ〉 = dµ(λ) so that in
general

∫

1Ad〈E(λ)ψ, φ〉 = 〈E(A)ψ, φ〉 for all A ∈ Ω.

Theorem 2.3. If E is a spectral measure and f is an E-measureable function,
then there exists a unique operator denoted by either

∫

fdE or
∫

f(λ)dE(λ) and
defined as

〈
∫

fdEψ, φ

〉

=

∫

f(λ)d〈E(λ)ψ, φ〉.(4)

Theorem 2.4 (Properties of
∫

fdE). Given any E-measureable functions f, g and
α ∈ C,

(i)
∫

(αf)dE = α
∫

fdE;
(ii)

∫

(f + g)dE =
∫

fdE +
∫

gdE;

(iii)
(∫

fdE
)∗

=
∫

f∗dE;

(iv)
∫

fgdE =
(∫

fdE
) (∫

fdE
)

.

Theorem 2.5. If E is a spectral measure and E(A) commutes with T for every
A ∈ Ω, then

∫

fdE commutes with T .
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3. Complex Spectral Measures

For the remainder of the paper, we assume that X is a locally compact Hausdorff
space and that Ω is the Borel σ-algebra on X.

Definition 3.1. A spectral measure is regular if for all A ∈ Ω,

E(A) = sup{E(C) : C ⊂ A, C is compact }.

Definition 3.2. The spectrum of a spectral measure is

spec(E) := X \{λ ∈ X : λ ∈ A, A is open, E(A) = 0}.

A spectral measure is compact if its spectrum is compact.

Theorem 3.1. If E is a regular spectral measure, then spec(E) is closed and
E(X \ spec(E)) = 0 (and therefore E(spec(E)) = 1).

Theorem 3.2. For any complex-valued, E-measureable function bounded on spec(E),
define

NE(f) = sup{|f(λ)| : λ ∈ spec(E)}.

Then if E is a compact, regular spectral measure and f is a continuous function on
X, then

∥

∥

∫

fdE
∥

∥ = NE(f).

Definition 3.3. A spectral measure is called complex when X = C.

Theorem 3.3. Every complex spectral measure is regular.

Theorem 3.4. If E is a compact, complex spectral measure and if T =
∫

λdE(λ),
then spec(T ) = spec(E).

Theorem 3.5. A complex spectral measure is defined completely by the operator
∫

λdE(λ). That is, given two complex spectral measures E1 and E2, E1 = E2 if
and only if

∫

λdE1(λ) =
∫

λdE2(λ).

Theorem 3.6. Let E be a complex spectral measure and T an operator. Then T
commutes with E(A) for all A ∈ Ω if and only if T commutes with both

∫

λdE(λ)
and

∫

λ∗dE(λ).

4. The Spectral Theorem

Theorem 4.1 (Spectral Theorem for Hermitian Operators). Let T be a Hermitian
operator. Then there exists a unique compact, complex spectral measure E such
that T =

∫

λdE(λ).

Theorem 4.2 (Spectral Theorem for Normal Operators). Let T be a normal op-
erator. Then there exists a unique compact, complex spectral measure E such that
T =

∫

λdE(λ).

Definition 4.1. For any normal operator T , we call the spectral measure E satis-
fying T =

∫

λdE(λ) the spectral measure of T .
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Appendix A. Applications of the Spectral Theorem

A.1. Weak Mixing. As a first example application of the spectral theorem, we
will use it to show that a measure-preserving transformation T is weak mixing when
the only eigenfunctions of the unitary operator UT defined by UT f(x) = f(Tx) are
the constants.

Definition A.1. Let (X,Ω, µ) be a probability space and T a measure preserving
transformation (mpt) on X (µ(A) = µ(T−1(A)) for all A ∈ Ω). Then T is called
weakly mixing if

(5) lim
n→∞

1

n

n−1
∑

k=0

|µ(T k(A ∩ B) − µ(A)µ(B)| → 0

for all A,B ∈ Ω.

Theorem A.1. A mpt T is weakly mixing if the only measureable eigenfunctions
of UT are the constants.

Proof. We first note that T is weakly mixing if and only if

(6) lim
n→∞

1

n

n−1
∑

k=0

|〈Uk
T f, g〉 − 〈f, 1〉〈1, g〉| → 0

for all f, g ∈ L2(µ).
Let V be the closed linear subspace of the eigenfunctions of T in L2(µ) and let

E be the spectral measure of T . Then for any λ0 ∈ spec(UT ), we have that

UT E({λ0}) =

∫

λdE(λ)

∫

1λ0
(λ)dE(λ) =

∫

λ1{λ0}(λ)dE(λ) = λ0E({λ0}),

so that in particular UT E({λ0})f = λ0f for every f ∈ L2(µ). Thus E({λ0})f ∈ V
for all f ∈ L2(µ). If f ∈ V ⊥, this implies that

0 = 〈E({λ0})f, f〉 = 〈E({λ0})
2f, f〉 = 〈E({λ0})f,E({λ0})f〉,

and therefore E({λ0})f = 0.
Now fix an f ∈ V ⊥ and g ∈ L2(µ) and define µ to be the complex Borel measure

on the spectrum of T satisfying dµ = d〈E(λ)f, g〉. Then for all λ0 ∈ spec(T ), we
have that

µ({λ0}) = 〈E({λ})f, g〉 = 0.

Setting ∆ = {(λ, ω) ∈ spec(UT ) × spec(UT ) : λ = ω}, we find

1

n

n−1
∑

k=0

|〈Uk
T f, g〉|2 =

1

n

n−1
∑

k=0

|〈

∫

λkdE(λ)f, g〉|2 =
1

n

n−1
∑

k=0

|λk

∫

〈dE(λ)f, g〉|2

=
1

n

n−1
∑

k=0

|

∫

λkdµ(λ)|2 =
1

n

n−1
∑

k=0

∫

λkdµ(λ)

∫

(ω)kdµ∗(ω)

=
1

n

n−1
∑

k=0

∫ ∫

(λω)kdµ(λ)dµ∗(ω) =

∫

1

n

n−1
∑

k=0

(λω)kd(µ × µ∗)(λ, ω)

=

∫

∆c

1

n

1 − (λω)k

1 − λω
d(µ × µ∗)(λ, ω) +

∫

∆

1d(µ × µ∗)(λ, ω).



INTRODUCTION TO SPECTRAL THEORY 5

Additionally,
∫

∆

1d(µ × µ∗)(λ, ω) =

∫ ∫

1∆(λ, ω)dµ(λ)dµ∗(ω) =

∫

µ({ω})dµ∗(ω) = 0.

For (λ, ω) /∈ ∆, (1 − (λω)k)/(1 − λω) is a cyclotomic polynomial, and is therefore
bounded on the compact set spec(UT ). Thus by the bounded convergence theorem

lim
n→∞

∫

∆c

1

n

1 − (λω)k

1 − λω
d(µ × µ∗)(λ, ω) =

∫

∆c

0d(µ × µ∗)(λ, ω) = 0.

We conclude that

lim
n→∞

1

n

n−1
∑

k=0

|〈Uk
T f, g〉|2 = 0.

By the Cauchy-Schwartz inequality,
(

n−1
∑

k=0

|〈Uk
T f, g〉|

)2

≤ n

n−1
∑

k=0

|〈Uk
T f, g〉|2.

Dividing both sides by n2, we find
(

1

n

n−1
∑

k=0

|〈Uk
T f, g〉|

)2

≤
1

n

n−1
∑

k=0

|〈Uk
T f, g〉|2,

and therefore

lim
n→∞

1

n

n−1
∑

k=0

|〈Uk
T f, g〉| = 0.

Now for any f, g ∈ L2(G), if the eigenfunctions of UT are the constants, f −
〈f, 1〉 ∈ V ⊥. Therefore

lim
n→∞

1

n

n−1
∑

k=0

|〈Uk
T (f − 〈f, 1〉), g〉| = lim

n→∞

1

n

n−1
∑

k=0

|〈Uk
T f − 〈f, 1〉, g〉|

= lim
n→∞

1

n

n−1
∑

k=0

|〈Uk
T f, g〉 − 〈f, 1〉〈1, g〉| = 0.

Therefore T is weakly mixing. ¤

A.2. Almost Periodic Functions.

Appendix B. Proofs of Theorems

B.1. Proof for Section 1.

Proof of Theorem (1.1). If λ /∈ spec(T ), then T − λ is invertible. Thus for any
ψ ∈ H with ‖ψ‖ = 1, we have that

1 = ‖ψ‖ = ‖(T − λ)−1(T − λ)ψ‖ ≤ ‖(T − λ)−1‖ · ‖(T − λ)ψ‖.

Thus ̺ (as defined by Eq. (1)) satisfies ̺(T − λ) ≥ 1/‖(T − λ)−1‖ and so λ /∈
aspec(T ). This proves our theorem. ¤

Lemma B.1. An operator T is invertible if and only if its range is dense in H and
there exists a positive real number c > 0 such that ‖Tψ‖ ≥ c‖ψ‖ for all ψ ∈ H.
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Proof. If T is invertible, then it is a bijection and therefore the range must be H.
Moreover,

‖ψ‖ = ‖T−1Tψ‖ ≤ ‖T−1‖ · ‖Tψ‖,

so ‖Tψ‖ ≥ c‖ψ‖ with c = 1/‖T−1‖.
Conversely, suppose the range of T is dense in H and there exists a positive

real number c > 0 such that ‖Tψ‖ ≥ c‖ψ‖ for all ψ ∈ H. We first show that
the range of T is H. Let {φi}

∞
i=1 be a convergent sequence in the range of H

converging to φ. For every i > 0, there exists a ψi ∈ H such that Tψi = φi.
Moreover, ‖ψi −ψj‖ ≤ ‖φi −φj‖/c. It follows that the sequence {ψi}

∞
i=1 is Cauchy

and therefore converges to a function ψ ∈ H. Since T is continuous, φ = Tψ, and
therefore φ is in the range of T . We conclude that the range of T is closed. Since
the range of T is dense in H, the range of T must be H.

The kernel of T is trivial, since if ψ ∈ ker(T ), then ‖ψ‖ ≤ ‖Tψ‖/c = 0, implying
that ψ = 0. Thus T is a bijection, and all that is left to show is that the algebraic
inverse, which we call T−1, is bounded. We have that ‖T−1ψ‖ ≤ ‖TT−1ψ‖/c ≤
‖ψ‖/c. It follows that ‖T−1‖ ≤ 1/c. This proves our theorem. Incidentally, this
also shows us that c = 1/‖T−1‖ is the ”sharpest” value for c. ¤

Proof of Theorem (1.2). By Theorem (1.1), we need only prove spec(T ) ⊂ aspec(T ).
Suppose that λ /∈ aspec(T ). Then there exists a constant c > 0 such that ‖(T −
λ)ψ‖ ≥ c‖ψ‖ for all ψ ∈ H. By Lemma (B.1), we need only show that the
range of T − λ is dense in H. Since T commutes with T ∗, T − λ commutes
with (T − λ)∗ = T ∗ − λ∗, and it follows that ‖(T − λ)ψ‖ = ‖(T ∗ − λ∗)ψ‖ for
all ψ ∈ H. If φ ∈ rangle(T − λ)⊥, then 0 = 〈(T − λ)ψ, φ〉 = 〈ψ, (T ∗ − λ∗)φ〉
for all ψ ∈ H, and therefore (T ∗ − λ∗)φ = 0. It follows that φ = 0, since
‖φ‖ ≤ ‖(T − λ)φ‖/c = ‖(T ∗ − λ∗)φ‖/c = 0. Thus rangle(T − λ)⊥ = {0} and
it follows that rangle(T − λ) is dense in H. This proves our theorem. ¤

Proof of Theorem (1.3). (i) Let p ∈ C[x] and λ ∈ spec(T ). Then λ is a root of
r(x) = p(x)− p(λ) and therefore there exists a polynomial q ∈ C[x] such that
q(x)(x − λ) = p(x) − p(λ). If r(T ) is invertible, then q(T ) commutes with
r−1(T ) and

(T − λ)q(T )r(T )−1 = r(T )r(T )−1 = 1 = r(T )−1r(T ) = r(T )−1(T − λ)q(T )

= r(T )−1q(T )(T − λ) = q(T )r(T )−1(T − λ).

It follows that (T − λ) is invertible with (T − λ)−1 = q(T )r(T )−1, which is a
contradiction. Thus r(T ) is not invertible and p(λ) ∈ spec(p(T )).

Conversely, suppose λ ∈ spec(p(T )) and let {ri}
n
i=1 be the roots of the

polynomial p(x) − λ. We have that p(x) − λ = (x − r1) . . . (x − rn) and
therefore p(T ) − λ = (T − r1) . . . (T − rn). Since p(T ) − λ is not invertible,
(T − rj) is not invertible for some j. Whence rj ∈ spec(T ) and p(rj)− λ = 0.
We conclude that λ ∈ p(spec(T )). This proves (i).

(ii) Note that for any λ ∈ C, we have that T−1 − λ−1 = −T−1λ−1(T − λ), and
it follows that T−1 − λ−1 is invertible if and only if T − λ is invertible. This
proves (ii).

(iii) If λ /∈ spec(T ), then T − λ is invertible. It follows that (T − λ)∗ = T ∗ − λ∗

is invertible, and therefore spec(T ∗) ⊂ spec(T )∗. By the same argument
with T replaced by T ∗, spec(T ) = spec((T ∗)∗) ⊂ spec(T ∗)∗, and therefore
spec(T )∗ ⊂ (spec(T ∗)∗)∗ = spec(T ∗). This proves our theorem.
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¤

Lemma B.2. If T is an operator such that ‖1 − T‖ < 1, then T is invertible.

Proof. Define c > 0 by c = 1 − ‖1 − T‖. Then

‖Tψ‖ = ‖ψ − (ψ − Tψ)‖ ≥ ‖ψ‖ − ‖(1 − T )ψ‖ ≥ ‖ψ‖ − ‖(1 − T )‖ · ‖ψ‖ = c‖ψ‖.

Thus by Lemma (B.1), we need only show that the range of T is dense in H. Let
φ ∈ H and let δ = inf{‖Tψ − φ‖ : ψ ∈ H}. Suppose that δ > 0. Then for all
ǫ = δ c

1−c
, there exists ψ ∈ H such that δ ≤ ‖Tψ − φ‖ < δ + ǫ. Moreover

δ ≤ ‖T (Tψ−φ)−(Tψ−φ)‖ = ‖(1−T )(Tψ−φ)‖ < (1−c)‖Tψ−φ‖ = (1−c)(δ+ǫ) ≤ δ.

That is, δ < δ, which is a contradiction. We conclude that δ = 0. Since φ ∈ H was
taken arbitrarily, this means that the range of T is dense in H. This proves our
lemma. ¤

Proof of Theorem (1.4). If λ0 /∈ spec(T ), then T − λ0 is invertible. If λ ∈ C with
|λ − λ0| < r := 1/‖(T − λ0)

−1‖, then

‖1 − (T − λ0)
−1(T − λ)‖ = ‖(T − λ0)

−1[(T − λ0) − (T − λ)]‖

≤ ‖(T − λ0)
−1‖ · |λ − λ0| < 1.

Therefore by Lemma (B.2) (T − λ0)
−1(T − λ) is invertible and it follows that

(T −λ) must be invertible. We conclude that the ball B(λ0; r) about λ0 of radius r
is contained in C \ spec(T ). It follows that C \ spec(T ) is open and therefore spec(T )
is closed. Moreover, if λ ∈ C satisfies ‖T‖ < |λ|, then ‖1− (1−T/λ)‖ = ‖T/λ‖ < 1
and therefore 1−T/λ is invertible by Lemma(B.2). It follows that T−λ is invertible,
and therefore λ /∈ spec(T ). Thus if λ ∈ spec(T ), then |λ| ≤ ‖T‖ necessarily. In
particular, this shows that NT (x) ≤ ‖T‖ and that spec(T ) is a closed and bounded
subset of C (and therefore compact).

Suppose T is Hermitian and λ ∈ spec(T ). Then T is normal and spec(T ) =
aspec(T ) by Theorem (1.2). Thus there exists a sequence {ψi}

∞
i=1 ⊂ H such that

‖ψi‖ = 1 for all i and ‖(T − λ)ψi‖ → 0. Thus

|λ − λ∗| = |λ − λ∗| · ‖ψi‖
2 = |〈(T − λ)ψi, ψi〉 − 〈(T − λ∗)ψi, ψi〉|

= |〈(T − λ)ψi, ψi〉 − 〈ψi, (T − λ)ψi〉|

≤ 2‖(T − λ)ψi‖ · ‖ψi‖ = 2‖(T − λ)ψi‖ → 0.

It follows that λ is real. Moreover for any λ ∈ R, since T is Hermitian, we have the
relation

‖T 2ψ − λ2ψ‖2 = 〈T 2ψ − λ2ψ, T 2ψ − λ2ψ〉

= ‖T 2ψ‖2 + |λ|4‖ψ‖2 − (λ2)∗〈T 2ψ,ψ〉 − λ2〈ψ, T 2ψ〉

= ‖T 2ψ‖2 + λ4‖ψ‖2 − 2λ2‖Tψ‖2.

Now let {ψi}
∞
i=1 ⊂ H be a sequence such that ‖ψi‖ = 1 for all i and ‖Tψi‖ → ‖T‖.

Then taking λ = ‖T‖ in the above relation, we find that

‖(T 2 − ‖T‖2)ψi‖
2 = ‖T 2ψi − λ2ψi‖

2 = ‖T 2ψi‖
2 + λ4‖ψi‖

2 − 2λ2‖Tψi‖
2

= ‖T 2ψi‖
2 + ‖T‖4 − 2‖T‖2‖Tψi‖

2 → 0.

Thus ‖T‖2 ∈ spec(T 2), and it follows from Theorem (1.3) that either ‖T‖ ∈ spec(T )
or −‖T‖ ∈ spec(T ). In particular, this proves NT (x) = ‖T‖. If p(x) ∈ R[x], then
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p(T ) is Hermitian and therefore NT (p(x)) = Np(T )(x) = ‖p(T )‖. This proves our
theorem. ¤

B.2. Proofs for Section 2.

B.3. Proofs for Section 3.

B.4. Proofs for Section 4.

Lemma B.3 (Weierstrass Approximation Theorem). Let X be a compact subset
of R and let f be a continuous function on X. Then there exists a sequence of real
polynomials {pi}

∞
i=1 such that pi → f uniformly on X.

Lemma B.4. Let L be a bounded linear functional on R[x] and let X be a compact
subset of R. Then there exists a unique Borel measure µ on X satisfying

L(p) =

∫

p(λ)dµ(λ) for all p ∈ R[x].

Sketch of proof. Let Ω be the collection of all Borel subsets of X and let A ∈ Ω.
Let {pi}

∞
i=1 ⊂ R[x] be a sequence of polynomials with pi → 1A uniformly on X.

Define µ(A) by
µ(A) = lim

i→∞
L(pi).

Then µ is a well-defined complex Borel measure on X. ¤

Proof of Theorem (4.1). Let ψ, φ ∈ H and define a function

L : R[x] → C

by L(p) = 〈p(T )ψ, φ〉. Then L is linear and

|L(p)| ≤ ‖p(T )ψ‖ · ‖φ‖ ≤ ‖p(T )‖ · ‖ψ‖ · ‖φ‖ ≤ NT (p(x)) · ‖ψ‖ · ‖φ‖

and therefore L is a linear functional on R[x]. The set R[x] is a dense subset of
the collection of all continuous, real-valued functions on spec(T ), and it follows
that there exists a unique complex measure µ on X = spec(T ) with σ-algebra Ω
consisting of all Borel subsets of spec(T ) such that L(p) =

∫

p(λ)dµ(λ) for all p ∈
C[x]. For given ψ, φ ∈ H, we denote this measure by µ(ψ,φ). Let ψ1, ψ2, φ1, φ2 ∈ H
and let α ∈ C.

∫

p(λ)dµ(ψ1+ψ2,φ)(λ) = 〈p(T )(ψ1 + ψ2), φ〉 = 〈p(T )ψ1, φ〉 + 〈p(T )ψ2, φ〉

=

∫

p(λ)dµ(ψ1,φ)(λ) +

∫

p(λ)dµ(ψ2,φ)(λ),

from which it follows that

µ(ψ1+ψ2,φ) = µ(ψ1,φ) + µ(ψ2,φ).

Similarly,
µ(ψ,φ1+φ2) = µ(ψ,φ1) + µ(ψ,φ2);

µ(αψ,φ) = αµ(ψ,φ) and µ(ψ,αφ) = α∗µ(ψ,φ).

Lastly, for A ∈ Ω we have that

|µ(ψ,φ)(A)| ≤ |µ(ψ,φ)|(X) = sup

{

1

NT (p)

∣

∣

∣

∣

∫

pdµ(ψ,φ)

∣

∣

∣

∣

: p ∈ C[x]

}

= sup {|〈p(T )ψ, φ〉|/NT (p) : p ∈ C[x]} = ‖ψ‖ · ‖φ‖.
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For any A ∈ Ω, we define µA(ψ, φ) = µ(ψ,φ)(A). The above properties show us that
µA is a symmetric, bilinear functional, and therefore for every A ∈ Ω, there exists a
unique Hermitian operator E(A) such that µA(ψ, φ) = 〈E(A)ψ, φ〉 for all ψ, φ ∈ H.

We first show that E(A) is idempotent for all A ∈ Ω by proving the more general
result E(A ∩ B) = E(A)E(B) for all A,B ∈ Ω. Fix B ∈ Ω and let {qi}

∞
i=1 ⊂ R[x]

be a fixed sequence of polynomials with qi(λ) → 1A(λ) uniformly on X. Also fix
ψ, φ ∈ H. For each i, define a measure νi by dνi(λ) = qi(λ)dµ(ψ,φ)(λ). Then for
any p ∈ C[x], q(T ) is Hermitian commutes with p(T ) and we have that

∫

p(λ)dνi(λ) =

∫

p(λ)qi(λ)dµ(ψ,φ)(λ) = 〈p(T )qi(T )ψ, φ〉

= 〈p(T )ψ, qi(T )φ〉 =

∫

p(λ)dµ(ψ,qi(T )φ).

Let A ∈ Ω and {pi}
∞
i=1 ⊂ R[x] be a sequence of polynomials with pi(λ) → 1A(λ)

uniformly on X. Then the dominated convergence theorem tells us that

νi(A) = lim
i→∞

∫

pi(λ)qi(λ)dµ(ψ,φ)(λ) = lim
i→∞

∫

pi(λ)dµ(ψ,qi(T )φ)(λ)

=

∫

1A(λ)dµ(ψ,qi(T )φ)(λ) = µA(ψ, qi(T )φ) = 〈E(A)ψ, qi(T )φ〉

= 〈qi(T )E(A)ψ, φ〉 =

∫

qi(λ)dµ(E(A)ψ,φ)(λ)

The dominated convergence theorem also tells us that

〈E(A ∩ B)ψ, φ〉 =

∫

1A∩B(λ)dµ(ψ,φ)(λ) =

∫

1A(λ)1B(λ)dµ(ψ,φ)(λ)

= lim
i→∞

νi(A) = lim
i→∞

∫

qi(λ)dµ(E(A)ψ,φ)(λ)

=

∫

1B(λ)dµ(E(A)ψ,φ)(λ) = 〈E(B)E(A)ψ, φ〉.

Since A,B ∈ Ω and ψ, φ ∈ H were arbitrary, this proves that E(A∩B) = E(A)E(B)
for all A,B ∈ Ω. Thus E is idempotent.

Lastly, we have that

〈E(X)ψ, φ〉 = µX(ψ, φ) = µ(ψ,φ)(X) =

∫

1dµ(ψ,φ)(λ) = 〈ψ, φ〉,

and by Theorem (2.2) this means that E(X) is a compact, complex spectral mea-
sure. A quick calculation shows that

∫

λdµ(ψ,φ)(λ) = 〈Tψ, φ〉.

The uniqueness of the measure follows from Theorem (3.5). This proves our theo-
rem. ¤

Sketch of proof of Theorem (4.2). Let T be normal and define T1 and T2 by T1 =
1
2 (T + T ∗) and T2 = 1

2i
(T − T ∗). Then T1 and T2 are Hermitian with T = T1 + iT2

and there exist unique spectral measures E1, E2 such that Ti =
∫

λdEi(λ) for
i = 1, 2.

Define A = {A + iB : A,B real Borel sets } and define a projection-valued set
function E by E(A + iB) = E1(A)E2(B). Then A is an algebra of sets and the



10 WILLIAM CASPER

σ-algebra generated by A is Ω, the collection of all Borel subsets of C. Moreover,
E(C) = E1(R)E2(R) = 1 and E extends uniquely to a projection-valued measure
E on C.
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