HYDROL-INF Modeling System User's Manual

Version 6.10

Xuefeng Chu, Ph.D. North Dakota State University 06/17/2013

Introduction to HYDROL-INF Version 6.10

A modified Green-Ampt infiltration-runoff model (Chu and Mariño, 2005) is the central part of the Windows-based HYDROL-INF. A new algorithm is proposed for determining the ponding condition, simulating infiltration into a layered soil profile of arbitrary initial water distributions under unsteady rainfall, and partitioning the rainfall input into infiltration and surface runoff. Two distinct periods, pre-ponding and post-ponding, are taken into account. The model tracks the movement of the wetting front along the soil profile, checks the ponding status, and, in particular, handles the shift between ponding and non-ponding conditions. Furthermore, the model has been extended to complex rainfall patterns that include both wet time periods with unsteady rainfall and dry time periods without rainfall. In addition, the SCS-CN model is also included in the Windows system and some useful hydrologic tools have been developed and incorporated in HYDROL-INF.

Funded by the National Science Foundation, this new version of HYDROL-INF is developed based on the previous one. Particularly, the modified Green-Ampt model in this new HYDROL-INF accounts for the hydraulic effects of surface ponded water on infiltration and unsaturated flow.

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. EAR-0907588. The new verion of HYDROL-INF has been incorporated into the P2P Modeling System as a part of the NSF-funded project, titled "CAREER: Microtopography-Controlled Puddle-filling to Puddle-merging (P2P) Overland Flow Mechanism: Discontinuity, Variability, and Hierarchy." Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

It is gratefully acknowledged that permissions to use some published data for estimating model input parameters have been granted by the Food and Agriculture Organization of the United Nations (FAO) and the American Society of Agricultural Engineers (ASAE). Special thanks also to the students in the Watershed Modeling class (CE 476/676) at North Dakota State University and the Hydrology class (NRM 680-A) at Grand Valley State University, for testing the software and providing their feedbacks that have been incorporated in this new version. This software also has been used in the Fluid Mechanics class (CE 309) at North Dakota State University.

Notes for Windows Vista and Windows 7 Users

The compatibility of HYDROL-INF with the Windows Vista and Windows 7 operating systems has been tested. It works well in both new Windows systems. But, two issues have been noticed:

1. Due to the use of higher security technologies, Windows Vista and Windows 7 do not allow any application programs to copy and write files to the folder: C:\Program

Files. Thus, users cannot select any folder within C:\Program Files as their working directory.

2. The Help files in the software require the Windows Help (WinHlp32.exe) program. Starting with the release of Windows Vista and Windows Server 2008, Microsoft has decided to no longer include in WinHlp32.exe as a component of the Windows operating system. For details, please refer to: <u>http://support.microsoft.com/kb/917607</u>

Solution: Users need to download and install WinHlp32.exe.

For the Windows Vista operating system, the Windows Help program is available at:

http://go.microsoft.com/fwlink/?LinkID=82148.

For the Windows 7 operating system, please visit: <u>http://www.microsoft.com/downloads/details.aspx?familyid=258AA5EC-E3D9-</u> 4228-8844-008E02B32A2C&displaylang=en#top

Contact Information for limited technical support

Dr. Xuefeng Chu Department of Civil Engineering (Dept 2470) North Dakota State University PO Box 6050 Fargo, ND 58108-6050

Tel.: 701-231-9758 Fax: 701-231-6185 E-mail: <u>xuefeng.chu@ndsu.edu</u>

Table of Contents

Co	over Page	1
In	troduction to HYDROL-INF Version 6.10	2
Та	ble of Contents	4
Li	st of Tables	7
Li	st iof Figures	8
1.	Installation of Hydrol-Inf	9
2.	Instructions for Using Hydrol-Inf	9
3.	Overview of the Hydrol-Inf Interface	· 10
	3.1 Main Interface	- 10
	3.2 Tool Bar	- 11
	3.3 File	· 11
	3.4 View	- 12
	3.5 Data	- 12
	3.6 Model	- 14
	3.7 Output	- 14
	3.8 SCS-CN Model	- 15
	3.9 Parameter-Estimation	- 17
	3.10 Tools	- 18
	3.11 Window	- 19
	3.12 Help	- 19
4.	File Management	· 20
	4.1 Open an Existing Data File	- 20
	4.2 Save Your Input Data	- 20
	4.3 Change the Default Directory	- 20
	4.4 Capture a Screen Picture and Copy It to Clipboard	- 20
	4.5 Print a Graph	- 20
	4.6 Print a Text File (any input data and output files)	- 20
5.	Input Data and Parameter Estimation	· 21
	5.1 Time Parameters	- 21
	5.2 Space Parameters	- 21

5.3 Soil Parameters	- 22
5.3.1 Saturated Hydraulic Conductivity	- 22
5.3.2 Effective Hydraulic Conductivity	- 23
5.3.3 Capillary Head (Suction)	- 23
5.3.4 Saturated Water Content	- 24
5.3.5 Residual Water Content	- 24
5.3.6 Soil Water Retention Parameter n	- 25
5.3.7 Soil Water Retention Parameter α	- 26
5.3.8 Field Capacity	- 26
5.3.9 Wilting Point	- 27
5.3.10 Initial Water Content	- 27
5.4 Meteorologic Data	- 28
5.4.1 Rainfall Intensity	- 28
5.4.2 Maximum ET Depth in Soil	- 28
5.4.3 Potential Evapotranspiration	- 29
5.4.4 Crop Coefficient	- 29
5.5 Watershed Data	- 30
Data Check and Model Execution	- 32
6.1 Data Check	- 32
6.2 Model Run	- 32
6.3 Check Model Run	- 32
Output and Post-Processing	- 33
7.1 Water Mass Balance Table and Graph	- 33
7.2 Water Table for the Surface Zone	- 35
7.3 Water Table for the Vadose Zone	- 36
7.4 Soil Water Content	- 37
7.5 Soil Water Flow Velocity	- 37
7.6 Flow Table for the Watershed Outlet	- 38
7.7 Hydrograph at the Watershed Outlet	- 38
7.8 Model Output Information	- 39
SCS-CN Model	- 40
	5.3 Soil Parameters

	8.1 Theory of the Curve Number Method	40
	8.2 CN Rainfall-Runoff Modeling	41
9.	Introduction to the Data Supporting System: Parameter Estimation	50
10.	Hydrologic Tools	51
	10.1 Computation of Measured Flow	51
	10.2 Time of Concentration Calculator	55
	10.3 24-Hour Rainfall Generator	61
11.	Help and Documentation	64
	11.1 Help System	64
	11.2 Documentation and Support	65
12.	References	67
Ap	pendix 1. Tables	68
Ap	pendix 2. Figures	78
Ар	pendix 3. List of Input Data	80

List of Tables

Table 1 Saturated Hydraulic Conductivity KS (cm/hr)	68
Table 2 Capillary Head (Suction) HWT (cm)	· 68
Table 3 Saturated Water Content WS (cm ³ /cm ³)	· 68
Table 4 Residual Water Content WR (cm ³ /cm ³)	· 69
Table 5 Soil Water Retention Parameter n VN	· 69
Table 6 Soil Water Retention Parameter α ALF (1/cm)	· 70
Table 7 Field Capacity FC (cm ³ /cm ³)	· 70
Table 8 Wilting Point WP (cm ³ /cm ³)	· 70
Table 9 Crop Coefficients and Mean Maximum Plant Heights	· 71

List of Figures

Figure 1 Field Capacity (Carsel et al. 2003)	- 78
Figure 2 Wilting Point (Carsel et al. 2003)	79

1. Installation of HYDROL-INF

Double click the file named "Setup.exe" on the CD drive and then just follow the instructions. After the installation, the HYDROL-INF software can be started from "Start" and "Programs." One example data file (HYDROL-INF.TXT) is included in the package for testing.

If you are using the Windows Vista or Windows 7 operating system, please install the Windows Help program (WinHlp32.exe) (see the Introduction of this document).

2. Instructions for Using HYDROL-INF

Use of the interfaced HYDROL-INF is quite simple, which includes three major steps:

<u>Step 1</u>: prepare all input data via menu "Data" or import data from an existing data file via menu "File-Open Data" (or button Open Data). Then save the data via menu "Save Data" (or button Save Data) or "Save As".

<u>Step 2</u>: check data and run the model via menus "Model-Check Data" and "Model-Run" (or button Check Data and button Run Model). All time-dependent data, such as rainfall, can be input manually or imported from an existing text or excel file. The data can also be exported to a file.

<u>Step 3</u>: Conduct post-processing via menu "Output." The water mass balance table and graphs of incremental and cumulative rainfall, infiltration, and runoff can be shown via the menu "Water Mass Balance Table" (or button Output Table) and the menu "Rainfall/Infiltration/Runoff Graph" (or button Output Graphs) These outputs can also be exported to Microsoft Excel for further processing (either spreadsheets or graphs) via the menu "Water Mass Balance Excel" (or button Transfer Output to Excel). The graphs can be printed out using menu "File-Print Graph" (or button Print Graph). A graph on the screen can be captured and copied to Clipboard. Additionally, a water table for the surface zone and vadose zone, soil water content, soil water flow velocity, as well as detailed model output information can also be shown via menus. All text-formatted input data and the simulated outputs can be opened and printed via menu "File-Print a Text File."

3. Overview of the HYDROL-INF Interface

3.1. Main Interface

The HYDROL-INF menus are organized according to the three fundamental modeling steps: Data, Model, and Output. The SCS-CN model can be accessed via the menu SCS-CN Model. The menu "Parameter-Estimation" is a special component, which serves as a database and helps users to estimate all input data. It provides explanation and estimation methods for all parameters. It also provides a number of links to some existing databases. Additionally, some hydrologic tools/calculators have been incorporated in the modeling system. The help system covers all information related to the three major modeling steps as well as the HYDROL-INF documentation.

HYDROL-INF Modeling System (new) Version 6.10 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	🛃 Hydrol-Inf 🧧	×
November 1, 2011 (Click the nicture to skin)	HYDROL-INF Modeling System (new) Version 6.10	
(Click the nicture to skin)	November 1, 2011	
	(Click the picture to skip)	

3.2. Tool Bar

The buttons in the tool bar (from left to right) are Open Data, Save Data, Print Graph, Screen Capture, Check Data, Run Model, Output Table, Output Graphs, Transfer Output to Excel, Hydrograph, Computation of Measured Flow, and Time of Concentration Calculator.

3.3. File

<u>Open Data (button Open Data)</u>: Open an existing data file <u>Save Data (button Save Data)</u>: Save the current data <u>Save As</u>: Save the current data to a user-specified data file <u>Default Directory</u>: Specify a working directory. The default directory is "C:\HYDROL-INF\". <u>Screen Capture (button Screen Capture)</u>: Copy a screen image, such as a graph to Clipboard. <u>Print Graph (button Print Graph)</u>: Print the current graph. <u>Print a Text File</u>: Open and print a text-formatted input/output file. Exit: Exit the HYDROL-INF.

💆 Hydrol-Inf		
File View Data Model Out	put SCS-CN Model Parameter-Estimation Tools Window Hel	P
Open Data Ctrl+O Save Data		
Save As		
Default Directory		
Screen Capture		
Print Graph		
Print a Text File		
Exit		

3.4. View

<u>Tool Bar</u>: Show/hide the toolbar. <u>Status Bar</u>: Show/hide the status bar.

🔀 Hydrol-Inf												
File	View	Data	Model	Output	SCS-CN Model	Parameter-Estimation	Tools	Window	Help			
<u> 2</u>												
	▼ Ditt		_									

3.5. Data

Time: Time-related parameters. Space: Space-related parameters. **Space Parameters** Number of Cells in Each Soil Layer Thickness of a Soil Layer Soil: Soil-related parameters. Saturated Hydraulic Conductivity KS Effective Hydraulic Conductivity KE Capillary Head (Suction) HWT Saturated Water Content WS Residual Water Content WR Soil Retention Parameter (n) VN Soil Retention Parameter (a) ALF Field Capacity FC Wilting Point WP Initial Water Content W0 Meteorological Data:

Rainfall Intensity (time-dependent data) <u>Maximum ET Depth in Soil</u> <u>Potential ET Rate</u> (time-dependent data) <u>Crop Coefficient</u> (time-dependent data) Watershed Data:

 File
 View
 Data
 Model
 Output
 SCS-CN Model
 Parameter-Estimation
 Tools
 Window
 Help

 Image: Space
 Im

🛃 н	🚰 Hydrol-Inf												
File	View	Data	Model	Output	SCS-CN Mod	el	Parameter-Estimation	Tools	Window	Help			
2		ie ace		Space Pa									
		Soi Mei	l teorolog	ic Data	Number (Thicknes	of C s of	Cells in Each Soil Layer Fa Soil Layer						
		Wa	itershed	Data									
					_								

🛃 Hydrol-	Inf						
File View	Data Model Outpu	SCS-CN Model Parameter-Estimation Tools Window Help					
- 8	Time Space						
	Soil	Saturated Hydraulic Conductivity KS					
	Watershed Data	Capillary Head (Suction) HWT					
		Saturated Water Content WS Residual Water Content WR					
		Soil Retention Parameter (n) VN Soil Retention Parameter (Alfa) ALF					
		Field Capacity FC					
		Wilting Point WP Initial Water Content W0					

G						_						
	🛃 н	ydrol-1	Inf									
i	File	View	Data	Model	Output	2	5CS-CN Model	Parameter-Esti	mation	Tools	Window	Help
1	2	88	Tim	ne			🗷 🔼 Ĕ	TE				
i			Spa	ace					_	_		
			Soi	I		Þ						
l			Me	teorolog	ic Data		Rain Intensi	ity				
			Wa	atershed	Data		Maximum E1	T Depth in Soil				
							Potential ET	Rate				
							Crop Coeffi	cient				

3.6. Model

<u>Check Data (button Check Data)</u>: Check all input data. <u>Run (button Run Model)</u>: Execute the model. <u>Check Model Run</u>: Check if the model run is successful.

3.7. Output

Water Mass Balance Table (button Output Table) Rainfall/Infiltration/Runoff Graph (button Output Graphs) Water Mass Balance Excel (button Transfer Output to Excel) Water Table for the Surface Zone Water Table for the Vadose Zone Soil Water Content Soil Water Flow Velocity Flow Table for the Watershed Outlet Hydrograph at the Watershed Outlet Model Output Information

🛃 н	ydrol-:	Inf								
File	View	Data	Model	Output	SCS-CN Model	Parameter-Estimati	ion	Tools	Window	Help
2	R / E		8	Wate Rainfa	r Mass Balance T all/Infiltration/Ru	able noff Graph		_	_	_
				Wate Wate Soil W Soil W	r Mass balance E r Table for the Si r Table for the V /ater Content /ater Velocity	urface Zone adose Zone				
				Flow T Hydro Mode	Table for the Wa ograph at the Wa I Output Informa	tershed Outlet atershed Outlet tion				

3.8. SCS-CN Model

Theory of the CN Method
Equations of the CN Method
CN Tables
P-Q Curves
<u>AMC-I-II-III CN</u>
Composite CN with Impervious Area
Data
Import Data (Open)
Working Directory
Unit System Selection
Time Parameters
Watershed Data
<u>Rainfall</u>
Stream Routing Data
Save Data
Run CN Model
Check Model Run
<u>Output</u>
Water Summary Table
Basin Flow Summary Table
Outlet Flow Table
Basin Hydrographs
Outlet Hydrographs
Calibration

G H	🖉 Hydrol-Inf									
File	View	Data	Model	Output	SCS-CN Model	Parameter-E	stimation	Tools	Window	Help
<u>22</u>			0		Theory of th Data Run CN Mod Check Model Output Calibration	e CN Method el Run	*			

3.9. Parameter-Estimation

Time Parameters: Space Parameters: Soil Parameters: Saturated Hydraulic Conductivity Effective Hydraulic Conductivity Capillary Head (Suction) Saturated Water Content **Residual Water Content** Soil Water Retention Parameter n Soil Water Retention Parameter a Field Capacity Table Figure Wilting Point Table Figure Initial Water Content Soil Websites Meteorologic Parameters: **Rainfall Intensity** Maximum ET Depth in Soil Potential ET Rate Crop Coefficient Meteorologic Websites Watershed Data:

🔀 Hydrol-Inf				
File View Data Model Output SCS-CN Model	Parameter-Estimation	Т	ools Window Help	
	Time Parameters			
	Space Parameters			
	Soil Parameters	×	Saturated Hydraulic Conductivity	
	Meteorologic Data	۲	Effective Hydraulic Conductivity	- 11
	Watershed Data		Capillary Head (Suction)	- 11
			Saturated Water Content	- 11
			Residual Water Content	- 11
			Soil Water Retention Parameter n	- 11
			Soil Water Retention Parameter Alfa	- 11
			Field Capacity	•
			Wilting Point	•
			Initial Water Content	
			Soil Websites	

3.10. Tools

<u>Computation of Measured Flow (button)</u>: <u>Time of Concentration Calculator (button)</u>: <u>24-Hour Rainfall Generator (button)</u>:

3.11. Window

<u>New Window:</u> <u>Cascade:</u> <u>Tile Horizontal:</u> <u>Tile Vertical:</u> <u>Tile Horizontal:</u> <u>Arrange Icons:</u>

3.12. Help

<u>Contents</u>: <u>Hydrol-Inf Website</u>: <u>Documentation</u>: <u>About</u>:

🚰 Hydrol-Inf		
File View Data Model Output SCS-CN Model Parameter-Estimation Tools Window	Help	
FIG OREMEK IT	Contents	
	Hydrol-Inf Website Documentation About	

4. File Management

4.1 Open an Existing Data File

If a data file already exists, you can open the file and import all data through menu File-Open Data or button Open Data in the toolbar. When you open an input data file from a directory, that directory will be automatically set as your working directory.

4.2 Save Your Input Data

Save your current input data using menu File-Save Data or button Save Data in the toolbar. The default data file name is "HYDROL-INF.TXT" that will be saved in the default directory (C:\HYDROL-INF) unless you specify a different working directory. Whenever you modify the data, you need to save the data before running the model. The current data can also be saved to a user-specified directory and file name by using menu File-Save As. That directory will be set as your working directory.

4.3 Change the Default Directory

The default project directory of HYDROL-INF is "C:\HYDROL-INF\". You can change it and specify your own project directory through menu File-Default Directory. Then your input data and all output files will be stored in that directory.

Change Default Directory	×
Enter new default directory	OK Cancel
C:\HYDROL-INF\	

4.4 Capture a Screen Picture and Copy It to Clipboard

You can make a screen capture and copy the graph/text image to clipboard. Then you can paste it to anywhere, such as your Word Document and Powerpoint presentation.

4.5 Print a Graph

After creating a graph (e.g., rainfall/infiltration/runoff graph), you can print it through menu File-Print Graph or button Print Graph in the toolbar. You are also able to select your printer, specify its properties, as well as paper size and orientation. Note that this menu works only when a graph window is active.

4.6 Print a Text File (any input data and output files)

Using menu File-Print a Text File, you can open and print a text file (any input data and output files).

5. Input Data and Parameter Estimation

5.1 Time Parameters

Total simulation time steps: NT (In the current program, NT_{max} =15000) Size of a time step (hr): DT

🔽 Simulation Time Parameters						
	Simulation Time Parameters					
	Total simulation time steps	30				
	Size of a time step	0.5 hr				
	Enter	Cancel				

5.2 Space Parameters

Number of soil layers: NL (In the current program, $NL_{max} = 50$) Number of cells for each soil layer: NC(I) (In the current program, the maximum number of the total soil cells is set as 1000) Thickness of each soil layer (cm): ZNL(I) Surface storage capacity (cm): SSMAX

Based upon soil properties, the entire soil profile is divided into a number of soil layers. Each soil layer further consists of computation cells.

<u>7</u> 9	pace Parameters	×	1
	Basic Space Parameters		
	Number of soil layers	ß	
	Surface storage capacity	1.5 cm	
	Enter	Cancel	

Number of Cells for Each Soil Lay Soil Layer No of Cells 1 1 1 2 10 3 10	er Import from a Data File Export to an Output File Import from an Excel File
OK Cancel	

3 T	hickness of I Soil Layer 1 2 3	Size(cm) 10 10 20	Import from a Data File Export to an Output File Import from an Excel File
	OK	Cancel	

5.3 Soil Parameters

5.3.1 Saturated Hydraulic Conductivity

Saturated Hydraulic Conductivity (cm/hr): KS Input KS value for each soil layer. KS can be estimated using Table 1.

🛃 Saturated I	lydraulic Conductivity	×
Soil Laye	r <mark>KS (cm/hr)</mark> 1 5.98 2 1.32 3 .2	Import from a Data File Export to an Output File Import from an Excel File
<u>ок</u>	Cancel	Note: No data are not needed for a single continuous rain event simulation

5.3.2 Effective Hydraulic Conductivity

Effective Hydraulic Conductivity (cm/hr): KE Input KE value for each soil layer. KE can be estimated from KS using Table 1.

Effective Hydraulic Conductivity	×
Soil Layer KE (cm/hr) 1 2.99 2 .66 3 .1	Import from a Data File Export to an Output File
OK Cancel	Import from an Excel File

5.3.3 Capillary Head (Suction)

Capillary Head (Suction) (cm): HWT Input HWT value for each soil layer. HWT can be estimated using Table 2.

💆 Capillary Hea	d (Suction)	×
Soil Layer 1 2 3	HWT (cm) 6.13 8.89 20.88	Import from a Data File
		Export to an Output File
		Import from an Excel File
OK	Cancel	

5.3.4 Saturated Water Content

Saturated Water Content (cm³/cm³): WS Input WS value for each soil layer. WS can be estimated using Table 3.

💆 S	aturated Wa	ater Content	×
	u	init: cm3/cm3	
	Soil Layer		
	2	.46 .46	Import from a Data File
			Export to an Output File
			Import from an Excel File
	OK	Cancel	

5.3.5 Residual Water Content

Residual Water Content (cm³/cm³): WR Input WR value for each soil layer. WR can be estimated using Table 4.

📝 Residual Water	Content	×
unit	cm3/cm3	
Soil Layer 1 2	WR .057 .078	Import from a Data File
3	.055	Export to an Output File
		Import from an Excel File
		Note: WR data are not
ОК	Cancel	continuous rain event simulation

5.3.6 Soil Water Retention Parameter n

Soil Water Retention Parameter n: VN

"n" is a soil water retention parameter in the van Genuchten model. Input VN values for both surface/root zone and deep vadose zone. VN can be estimated by using Table 5.

💆 Soil Retention Parameter n	×
Soil Layer VN 1 2.28 2 1.56 3 1.31	Import from a Data File Export to an Output File Import from an Excel File Note: VN data are not
OK Cancel	needed for a single continuous rain event simulation

5.3.7 Soil Water Retention Parameter α

Soil Water Retention Parameter α (1/cm): ALF

" α " is a soil water retention parameter in the van Genuchten model. Input ALF value for each soil layer. ALF can be estimated using Table 6.

Output File	Soil Layer 1 2 3	ALF(1/cm) .124 .036 .019	Import from a Data File Export to an
			Output File

5.3.8 Field Capacity

Field Capacity (cm³/cm³): FC

Input FC value for each soil layer. FC can be estimated using Table 7. FC can also be estimated by using Figure 1 (Source: Carsel et al. 2003)

💆 Field Capacity	X
unit: cm3/cm3	
Soil Layer FC 11 229 3 .32	Import from a Data File
	Export to an Output File
	Import from an Excel File
	Note: FC data are not
OK Cancel	needed for a single continuous rain event simulation

5.3.9 Wilting Point

Wilting Point (cm³/cm³): WP

Input WP values for each soil layer. WP can be estimated by using Table 8. WP can also be estimated by using Figure 2 (Source: Carsel et al. 2003).

🥃 V	Vilting Point			×
	ι	init: cm3/cm3		
	Soil Layer 1 2 3	WP .03 .05 085		Import from a Data File
				Export to an Output File
				Import from an Excel File
				Note: WP data are not needed for a single
	OK	Cano	el	continuous rain event simulation

5.3.10 Initial Water Content

Initial Water Content (cm³/cm³): W0

Initial water content represents the average soil moisture condition in each discretized soil cell at the initial simulation time (t = 0). Input W0 values for each soil cell.

5.4 Meteorologic Data

5.4.1 Rainfall Intensity

Rainfall Intensity (cm/hr): RAINS

Rainfall intensity data are needed in the model. The data can be obtained from government agencies' climate centers, such as NOAA National Climatic Data Center (NCDC) and USDA-NRCS National Water and Climate Center (PRISM). Links to these websites can be found in menu Parameter Estimation.

	🕏 Rainfall I
Tiem steps Rain (cm/hr) Import from a Data File 1 1.5 Import from a Data File 3 .05 Export to an Output File 6 1.8 T 7 1.5 Import from a Data File 9 .02 Import from an Excel File 0K Cancel	

5.4.2 Maximum ET Depth in Soil

Maximum ET Depth in Soil (cm): DMET

The maximum ET depth in soil is generally equal to the maximum depth of the crop root zone. The value depends on crop types.

💆 Maximum ET Depth	n in Soil 🛛 🔀
Maximum ET De	pth in Soil (cm)
15	
Note: This parameter single continuous rain	is not needed for a event simulation
Enter	Cancel

5.4.3 Potential Evapotranspiration Rate

Potential Evapotranspiration Rate (cm/hr): ET0

Potential evapotranspiration rate data are needed in the model. The data can be obtained from government agencies' climate centers, such as NOAA National Climatic Data Center (NCDC) and USDA-NRCS National Water and Climate Center (PRISM). Links to these websites can be found in menu Parameter Estimation.

5.4.4. Crop Coefficient

Crop Coefficient: KBC

Crop coefficient is the ratio of actual crop evapotranspiration ET_c to the standard reference crop evapotranspiration (potential evapotranspiration) ET_0 .

$KBC = ET_c/ET_0$

The value of KBC can change with crop types and stages of crop growth. The KBC value is small during the initial crop stage, often less than 0.4. The value increases with rapid plant development and reaches a maximum value at the time of maximum or near maximum plant development (it generally ranges from 1.0 to 1.2). As leaves begin to age during the late period, the value begins to decease until it reaches a lower value at the end of the growing period (Allen et al., 1998). The FAO Paper 56 (Allen et al., 1998) provides details on how to determine the crop coefficient. Users can access this reference via the menu Plant Websites. Single (time-averaged) crop

coefficients for three typical stages of crop growth (initial, mid, and end) and mean maximum plant heights for non stressed, well-managed crops in subhumid climates (RHmin $\approx 45\%$, u2 ≈ 2 m/s) can be found from Table 9 (Note: following the original notation, Kc denotes crop coefficient in this table).

7 C	🔀 Crop Coefficient (KBC)				
Note: KBC data are not needed for a single continuous rain event simulation					
	Time Steps	Crop Coeff			
	1	.8		Import from a	
	2	.8		Data File	
	3	.8			
	4	.8		Export to an	
	5	.8		Output File	
	6	.8			
	7	.8		Import from	
	8	.8		an Excel File	
	9	.8			
	10	.8	▼		
OK Cancel					

5.5 Watersed Data

Watershed area (ha): AHA Percentage of directly-connected impervious area (%): IMP Time of concentration (hr): TC Index of the unit hydrograph (1: SCS UH; 2: Clark UH): IUH Basin storage coefficient in the Clark UH (hr): RC Initial baseflow (m³/s): QB0 Baseflow recession constant: RB Baseflow threshold value (ratio to the peak): RTHRE

Note that RC is required for the Clark unit hydrograph method only.

For watershed modeling, two unit hydrograph techniques (SCS UH and Clark UH) are available for selection. Baseflow is simulated by using the recession method as follows:

 $Q_B = Q_{B0} r_B^t$

where Q_{B0} = initial baseflow; r_B = daily recession constant; and t = time (hr). Baseflow is constant (Q_{B0}) for r_B = 1. Note that the recession constant is dependent on the unit of time (Maidment 1993, page 9.5). A daily recession constant is used in this progam.

a 1	Watershed Parameters		x
	-Watershed Hydrologic Modeling Para	meters	7
	Watershed Area (ha)	100	
	Percent of Directly-Connected Impervious Area (%)	1	
	Time of Concentration (hr)	5	
	Index of the Unit Hydrograph (1: SCS UH; 2: Clark UH)	2	
	Basin Storage Coefficient (hr) (for Clark UH only)	0.6	
	Initial Baseflow (m^3/s)	0.2	
	Baseflow Recession Constant	0.9	
	Baseflow Threshold Value (Ratio to the Peak)	0.1	
	Enter	Cancel	

6. Data Check and Model Execution

6.1 Data Check

To make sure that all input data and relationship of some interrelated data are in reasonable ranges, the data should be checked by menu Check Data or button Check Data in the toolbar before running the model. Then, a list of warnings and errors will be shown. It is advised that you run the model after eliminating all warnings and errors.

🚰 List of Data Check	×
List of Errors:	
Lisk - Out-min-mu	
List or warnings:	
Liose	

6.2 Model Run

Once all data are checked, the model can be executed by clicking Model-Run or button Run Model in the toolbar.

6.3 Check Model Run

Check whether or not the model run is successful.

	Hydroll	nf 🛛 🔀
Hydrollnf X The model run is successful. X	1	The model run failed. Please check your input data!
ОК		ОК

7. Output and Post-Processing

7.1 Water Mass Balance Table and Graph

Water Mass Balance Table (button Output Table in the toolbar) Rainfall/Infiltration/Runoff Graph (button Output Graphs in the toolbar) Water Mass Balance Excel (button Transfer Output to Excel in the toolbar)

A water mass balance table shows incremental and cumulative rainfall (Rain, C-Rain), infiltration (Infil, C-Infil), runoff (Runf, C-Runf), and evapotranspiration from the surface water storage (ETS, C-ETS), as well as surface storage (SSTG) and the change in surface storage (D-Stg) for each time step.

Both incremental and cumulative rainfall and the simulated infiltration and runoff can also be shown in form of graphs. A set of plot parameters will be automatically determined, which include minimum and maximum x values (time), minimum and maximum y values, number of x ticks, number of y ticks, decimal digit of marked x values, decimal digit of marked y values, index of gridlines (0 solid; 1 dash; 2 dot; 3 dash + dot; 4 dash + two dots; and 5 no gridline).

The simulated outputs can also be transferred to Microsoft Excel via menu Water Mass Balance Excel or button Transfer Output to Excel in the toolbar. Then these data can be analyzed by using Excel spreadsheet and graphs can also be created within Excel. Note that the data transfer may take a long time for a large data set.

Note that the mass balance terms in the aforementioned table and graph (e.g., runoff) are the depths of water over the pervious soil area only. For watershed modeling, total depth of runoff should include the quantities from both pervious area [(1-IMP/100)A] and directly-connected impervious area [IMP/100*A].

Step	Time(hr)	Rain(cm)	Infil(cm)	Runf(cm)	ETS(cm)	D-Stg(cm)	P-I-R-E(cm)	C-Rain(cm)	C-Infil(cm)	C-Runf(cm)	C-ETS(cm)	SSTG(cr
1	0.500	0.7500	0.7500	0.0000	0.0000	0.0000	0.0000	0.7500	0.7500	0.0000	0.0000	0.000
2	1.000	3.7500	2.9331	0.0000	0.0000	0.8169	0.8169	4.5000	3.6831	0.0000	0.0000	0.816
3	1.500	0.0250	0.8419	0.0000	0.0000	-0.8169	-0.8169	4.5250	4.5250	0.0000	0.0000	0.000
4	2.000	0.0050	0.0050	0.0000	0.0000	0.0000	0.0000	4.5300	4.5300	0.0000	0.0000	0.000
5	2.500	0.0100	0.0100	0.0000	0.0000	0.0000	0.0000	4.5400	4.5400	0.0000	0.0000	0.000
6	3.000	0.9000	0.8987	0.0000	0.0000	0.0013	0.0013	5.4400	5.4387	0.0000	0.0000	0.001
7	3.500	0.7500	0.7513	0.0000	0.0000	-0.0013	-0.0013	6.1900	6.1900	0.0000	0.0000	0.000
8	4.000	0.0250	0.0250	0.0000	0.0000	0.0000	0.0000	6.2150	6.2150	0.0000	0.0000	0.000
9	4.500	0.0100	0.0100	0.0000	0.0000	0.0000	0.0000	6.2250	6.2250	0.0000	0.0000	0.000
10	5.000	0.0050	0.0050	0.0000	0.0000	0.0000	0.0000	6.2300	6.2300	0.0000	0.0000	0.000
11	5.500	2.7500	0.5626	0.6874	0.0000	1.5000	1.5000	8.9800	6.7926	0.6874	0.0000	1.50
12	6.000	0.0050	0.3952	0.0000	0.0000	-0.3902	-0.3902	8.9850	7.1878	0.6874	0.0000	1.10
13	6.500	0.0050	0.3270	0.0000	0.0000	-0.3220	-0.3220	8.9900	7.5148	0.6874	0.0000	0.78
14	7.000	0.0050	0.2872	0.0000	0.0000	-0.2822	-0.2822	8.9950	7.8021	0.6874	0.0000	0.50
15	7.500	0.0100	0.2603	0.0000	0.0000	-0.2503	-0.2503	9.0050	8.0624	0.6874	0.0000	0.25
16	8.000	1.7500	0.2405	0.2647	0.0000	1.2448	1.2448	10.7550	8.3029	0.9521	0.0000	1.500
17	8.500	0.0000	0.1000	0.0000	0.4800	-0.5800	-0.5800	10.7550	8.4029	0.9521	0.4800	0.920
18	9.000	0.4000	0.2277	0.0000	0.0000	0.1723	0.1723	11.1550	8.6306	0.9521	0.4800	1.092
19	9.500	0.0000	0.1000	0.0000	0.4800	-0.5800	-0.5800	11.1550	8.7306	0.9521	0.9600	0.513
20	10.000	0.0000	0.0323	0.0000	0.4800	-0.5123	-0.5123	11.1550	8.7629	0.9521	1.4400	0.000
21	10.500	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	11.1550	8.7629	0.9521	1.4400	0.00
22	11.000	0.7500	0.6767	0.0000	0.0000	0.0733	0.0733	11.9050	9.4396	0.9521	1.4400	0.073
23	11.500	1.2500	0.1982	0.0000	0.0000	1.0518	1.0518	13.1550	9.6377	0.9521	1.4400	1.12
24	12.000	1.5000	0.1860	0.9392	0.0000	0.3749	0.3749	14.6550	9.8237	1.8913	1.4400	1.50
25	12.500	0.5000	0.1796	0.3204	0.0000	0.0000	0.0000	15.1550	10.0034	2.2116	1.4400	1.50
26	13 000	0.5000	0 1740	0.3260	0 0000	0 0000	0.0000	15 6550	10 1774	2 5376	1 4400	1.50

💆 Graphs	×
Index of Plot (1-2) 2	
1: Incremental Plot	
2: Cumulative Plot	
OK	

🔀 Plot Parameters	×
Plot Parameters	
Xmin 0 Xmax 15	
Ymin 0 Ymax 3	
Number of X ticks 10	
Number of Y ticks 10	
Decimal digit of marked X values ####0.0 (e.g.,	
Decimal digit of marked Y values ###0.000 #### 0.000)	
Index of gridlines	
0 solid; 1 dash; 2 dot; 3 dash+dot; 4 dash+2dots; 5 no gridline	
ок	

🚰 Transfer Data to Excel	×
The simulation output data are transferred to Excel It may take a minute depending on the numbers of the discretized cells and simulation time steps. Please wait!!	

7.2 Water Table for the Surface Zone

Water Table for the Surface Zone

A cumulative water mass balance table for the surface zone shows cumulative rainfall (C-Rain), infiltration (C-Infil), runoff (C-Runf), evapotranspiration from the surface water storage (C-ETS), and the surface storage (SSTG) for each time step. Note that the mass balance terms in the table (e.g., runoff) are the depths of water over the pervious soil area only.

assB-Surf]
	- Mass Ba	lance Table f	or the Surface	Zone of the	Pervious Soil	Area		
Step	T(hr)	C-Rain(cm)	C-Infil(cm)	C-Runf(cm)	C-ETS (cm)	SSTG (cm)	P-I-R-E(cm)	
1	.5000	.750000	.750000	.000000	.000000	.000000	.000000	
2	1.0000	4.500000	3.683087	.000000	.000000	.816913	.816913	
3	1.5000	4.525000	4.525000	.000000	.000000	.000000	.000000	
4	2.0000	4.530000	4.530000	.000000	.000000	.000000	.000000	
5	2.5000	4.540000	4.540000	.000000	.000000	.000000	.000000	
6	3.0000	5.440000	5.438715	.000000	.000000	.001285	.001285	
7	3.5000	6.190000	6.190000	.000000	.000000	.000000	.000000	
8	4.0000	6.215000	6.215000	.000000	.000000	.000000	.000000	
9	4.5000	6.225000	6.225000	.000000	.000000	.000000	.000000	
10	5.0000	6.230000	6.230000	.000000	.000000	.000000	.000000	
11	5.5000	8.980000	6.792608	.687392	.000000	1.500000	1.500000	
12	6.0000	8.985000	7.187781	.687392	.000000	1.109826	1.109826	
13	6.5000	8.990000	7.514826	.687392	.000000	.787781	.787781	
14	7.0000	8.995000	7.802062	.687392	.000000	.505546	.505546	
15	7.5000	9.005000	8.062367	.687392	.000000	.255240	.255240	
16	8.0000	10.755000	8.302892	.952108	.000000	1.500000	1.500000	
17	8.5000	10.755000	8.402892	.952108	.480000	.920000	.920000	
18	9.0000	11.155000	8.630575	.952108	.480000	1.092316	1.092316	
19	9.5000	11.155000	8.730575	.952108	.960000	.512316	.512316	
20	10,0000	11 155000	8 762892	952108	1 440000	000000	000000	

7.3 Water Table for the Vadose Zone

Water Table for the Vadose Zone

A cumulative water mass balance table for the vadose zone shows cumulative infiltration (C-Infil), evapotranspiration from the soil profile (C-ET), discharge to the underlying groundwater (C-GW), and changes in the soil water storage (soil water content) (D-WC) for each time step. Note that the mass balance terms in the table are the depths of water over the pervious soil area only.

lassB-Soil							•
	- Mass Ba	alance Table for	the Vadose	Zone under the	Pervious S	oil Area	-
Step	T(hr)	C-Infil(cm)	C-ET (cm)	C-GW (cm)	D-WC (cm)	I-ET-GW(cm)	
1	.5000	.750000	.000000	.000000	.750000	.750000	
2	1.0000	3.683087	.000000	.000000	3.683087	3.683087	
3	1.5000	4.525000	.000000	.000000	4.525000	4.525000	
4	2.0000	4.530000	.000000	.000000	4.530000	4.530000	
5	2.5000	4.540000	.000000	.000000	4.540000	4.540000	
6	3.0000	5.438715	.000000	.000000	5.438715	5.438715	
7	3.5000	6.190000	.000000	.000000	6.190000	6.190000	
8	4.0000	6.215000	.000000	.000000	6.215000	6.215000	
9	4.5000	6.225000	.000000	.000000	6.225000	6.225000	
10	5.0000	6.230000	.000000	.000000	6.230000	6.230000	
11	5.5000	6.792608	.000000	.000000	6.792608	6.792608	
12	6.0000	7.187781	.000000	.000000	7.187781	7.187781	
13	6.5000	7.514826	.000000	.000000	7.514826	7.514826	
14	7.0000	7.802062	.000000	.000000	7.802062	7.802062	
15	7.5000	8.062367	.000000	.000000	8.062367	8.062367	
16	8.0000	8.302892	.000000	.000000	8.302892	8.302892	
17	8.5000	8.402892	.000000	.000000	8.402892	8.402892	
18	9.0000	8.630575	.000000	.000000	8.630575	8.630575	
19	9.5000	8.730575	.000000	.000000	8.730575	8.730575	
7.4 Soil Water Content

Soil Water Content

The soil water content table shows both temporal and spatial variations of soil moisture conditions.

🛃 W	T.txt									_	
L	Soil	Water Co	ontent (d	cm3/cm3)							
L											
	NO.	T(hr)	1.000	2.000	3.000	4.000	5.000	6.000	7.000	8.000	9
	0	.00	.100	.100	.100	.100	.100	.100	.100	.100	
	1	.50	.440	.440	.170	.100	.100	.100	.100	.100	
	2	1.00	.440	.440	.440	.440	.440	.440	.440	.440	
	3	1.50	.440	.440	.440	.440	.440	.440	.440	.440	
	4	2.00	.440	.440	.440	.440	.440	.440	.440	.440	
	5	2.50	.440	.440	.440	.440	.440	.440	.440	.440	
	6	3.00	.440	.440	.440	.440	.440	.440	.440	.440	
	7	3.50	.440	.440	.440	.440	.440	.440	.440	.440	
	8	4.00	.440	.440	.440	.440	.440	.440	.440	.440	
	9	4.50	.440	.440	.440	.440	.440	.440	.440	.440	
	10	5.00	.440	.440	.440	.440	.440	.440	.440	.440	
	11	5.50	.440	.440	.440	.440	.440	.440	.440	.440	
	12	6.00	.440	.440	.440	.440	.440	.440	.440	.440	
	13	6.50	.440	.440	.440	.440	.440	.440	.440	.440	
	14	7.00	.440	.440	.440	.440	.440	.440	.440	.440	
	15	7.50	.440	.440	.440	.440	.440	.440	.440	.440	
	16	8.00	.440	.440	.440	.440	.440	.440	.440	.440	
	17	8.50	.440	.440	.440	.440	.440	.440	.440	.440	
	18	9.00	.440	.440	.440	.440	.440	.440	.440	.440	
	19	9.50	.440	.440	.440	.440	.440	.440	.440	.440	
	20	10.00	.372	.440	.440	.440	.440	.440	.440	.440	
	21	10.50	.100	.132	.440	.440	.440	.440	.440	.440	
	22	11.00	.440	.440	.440	.440	.440	.440	.440	.440	
	23	11.50	.440	. 440	.440	.440	.440	.440	.440	.440	-
											▶

7.5 Soil Water Flow Velocity

Soil Water Flow Velocity

The soil water flow velocity table shows both temporal and spatial variations of soil water flow velocities.

💆 V.txt										IJŇ
Soi	.l Water F	'low Velo	city (cm	/hr)						-
NO.	T(hr)	.000	1.000	2.000	3.000	4.000	5.000	6.000	7.000	
1	. 50	1.500	.820	.140	.000	.000	.000	.000	.000	
2	1.00	5.866	5.866	5.866	5.326	4.646	3.966	3.286	2.606	
3	1.50	1.684	1.684	1.684	1.684	1.684	1.684	1.684	1.684	
4	2.00	.010	.010	.010	.010	.010	.010	.010	.010	
5	2.50	.020	.020	.020	.020	.020	.020	.020	.020	
6	3.00	1.797	1.797	1.797	1.797	1.797	1.797	1.797	1.797	
7	3.50	1.503	1.503	1.503	1.503	1.503	1.503	1.503	1.503	
8	4.00	.050	.050	.050	.050	.050	.050	.050	.050	
9	4.50	.020	.020	.020	.020	.020	.020	.020	.020	
10	5.00	.010	.010	.010	.010	.010	.010	.010	.010	
11	5.50	1.125	1.125	1.125	1.125	1.125	1.125	1.125	1.125	
12	6.00	.790	.790	.790	.790	.790	.790	.790	.790	
13	6.50	.654	.654	.654	.654	.654	.654	.654	.654	
14	. 7.00	.574	.574	.574	.574	.574	.574	.574	.574	
15	7.50	.521	.521	.521	.521	.521	.521	.521	.521	
16	8.00	.481	.481	.481	.481	.481	.481	.481	.481	
17	8.50	.200	2.040	2.720	3.400	4.080	4.760	5.440	5.980	
18	9.00	.455	.455	.455	.455	.455	.455	.455	.455	
19	9.50	.200	1.225	1.905	2.585	3.265	3.945	4.625	5.305	
20	10.00	.065	.200	.745	1.425	2.105	2.785	3.465	4.145	
21	10.50	.000	.077	.453	.395	1.011	1.659	2.322	2.994	
22	11.00	1.353	.673	.058	.058	.058	.058	.058	.058	
23	11.50	.396	.396	.396	.396	.396	.396	.396	.396	-
•										•

7.6 Flow Table for the Watershed Outlet

Mass balance table for the entire watershed. Note that the infiltration and runoff from the pervious and directly-connected impervious areas are the depths of water over the entire watershed area.

N								
	Water 1	Table for the Ent:	ire Watershed					
Step	Time(hr)	Rain(cm)	Infl(cm)	Runoff-P(cm)	Runoff-IMP(cm)	Direct-Q(m3/s)	Baseflow(m3/s)	Total-Q(m3/s)
1	.50000	.750000	.749250	.000000	.000750	.000466	.189737	.190203
2	1.00000	3.750000	2.930154	.000000	.003750	.003630	.180000	.183630
3	1.50000	.025000	.841071	.000000	.000025	.007807	.170763	.178570
4	2.00000	.005000	.004995	.000000	.000005	.007170	.162000	.169170
5	2.50000	.010000	.009990	.000000	.000010	.003581	.153687	.157267
6	3.00000	.900000	.897816	.000000	.000900	.002057	.145800	.147857
7	3.50000	.750000	.750534	.000000	.000750	.002653	.138318	.140971
8	4.00000	.025000	.024975	.000000	.000025	.003129	.131220	.134349
9	4.50000	.010000	.009990	.000000	.000010	.002232	.124486	.126718
10	5.00000	.005000	.004995	.000000	.000005	.001080	.118098	.119178
11	5.50000	2.750000	.562045	.686705	.002750	.428902	.112038	.540940
12	6.00000	.005000	.394779	.000000	.000005	1.194788	.106288	1.301076
13	6.50000	.005000	.326718	.000000	.000005	1.190105	.100834	1.290939
14	7.00000	.005000	.286949	.000000	.000005	.598445	.095659	.694105
15	7.50000	.010000	.260045	.000000	.000010	.246438	.090750	.337189
16	8.00000	1.750000	.240284	.264451	.001750	.266916	.086093	.353009
17	8.50000	.000000	.099900	.000000	.000000	.503037	.081675	.584713
18	9.00000	.400000	.227456	.000000	.000400	.476931	.077484	.554415
19	9.50000	.000000	.099900	.000000	.000000	.238823	.073508	.312330
20	10.00000	.000000	.032284	.000000	.000000	.098744	.069736	.168479
21	10.50000	.000000	.000000	.000000	.000000	.040722	.075739	.116461

7.7 Hydrograph at the Watershed Outlet

Hydrograph at the outlet

7.8 Model Output Information

Model Output Information

It shows all input data, computation details of the model execution, such as determination of ponding condition.

3	Output-Inf	o.txt					_	
		· Pre-Pondi	ng Computat	ion: Dete:	rmination of	Ponding Condit	ion	
	ND-							
	NF- 7D-	4 06401						
	2F- T2D-	4.00401						
	IZP=	1.30000						
	ICF=	1.301/6						
	TP=	.58424						
	TPD=	.10760						
	T0=	.47663						
	No.	T(h)	tz(h)	z(cm)	Rain(cm/h)	Inf-Ca(cm/h)	C-Inf(cm)	
	1	.5000	.036579	2.2059	1.50000	11.29901	.75000	
	2	.5842	.107601	4.0640	7.50000	7.50000	1.38176	
	Ponding	etatue ie	broken!					
	VT-	A A	DIOKCH.					
	DATM-	01000						
	STCCU-	.01000						
	51GCW=	.00000						
	12=	2.34304						
		· Pre-Pondi	ng Computat	ion: Dete:	rmination of	Ponding Condit	ion	
	NP=	81						
	ZP=	17.45101						_
	IZP=	1.80000						
4								

8. SCS-CN Model

8.1 Theory of the Curve Number Method

The SCS-CN model is a separate model, in which the SCS-CN method is used to simulate surface runoff. The relevant theoretical information can be accessed via the menu of Theory of the CN Method, including equations, CN tables, P-Q curves, CN values for AMC-I, AMC-II, and AMC-III, and composite curve numbers with impervious areas. Note that the SCS-CN model should be used for event rainfall-runoff modeling only.

8.2 CN Rainfall-Runoff Modeling

In the CN rainfall-runoff modeling, two different unit systems (SI system and US customary unit system) can be selected. All modeling steps, including data preparation (import data, change working directory, input data, save data), model run and check, and output (view simulation summary tables and hydrographs) can be accessed through the menu SCS-CN Model. The modeling can be conducted for a single watershed or multiple watersheds. Comparison between the simulated and observed hydrographs can also be performed via the menu Calibration.

For watershed modeling, either SCS unit hydrograph or Clark unit hydrograph can be selected. Baseflow is simulated by using the recession method (see pages 28-29 for details). Note that the recession constant is dependent on the unit of time (Maidment 1993, page 9.5). A daily recession constant is used in this progam.

🗟 Time Parameters									
Time Parameters for the CN I	Model								
Total simulation time steps	100								
Size of a time step	0.1666667 hr								
Enter	Cancel								

Number of Subbasins	\mathbf{X}							
- Watershed Data								
Total number of subbasins 10								
ΟΚ								

3	Watershed Parameters	×
	-Watershed Parameters for the CN Mo	del (one basin only)
	Watershed Area (ha or mi^2)	0.3861
	Percent of Directly-Connected Impervious Area (%)	1
	Time of Concentration (hr)	2
	Index of the Unit Hydrograph (1: SCS UH; 2: Clark UH)	2
	Basin Storage Coefficient (hr) (for Clark UH only)	2.5
	Initial Baseflow (m^3/s or cfs)	3.00175
	Baseflow Recession Constant	0.9
	Baseflow Threshold Value (Ratio to the Peak)	0.1
	Curve Number	75
	Initial Abstraction Coefficient (default value = 0.2)	0.2
	Enter	Cancel

💈 Watershed Data - Subbasin Information

Basin 1 2	D GOIN	IUH	AHA	IMP(%)	TC(hr)	RC(hr)	QBO	RB	RTHRE	CN	IAC
Basin 2 2 .1 2 .3 1 1 .95 .1 80 Basin 3 2 .2 5 .4 1.1 1.1 .95 .1 80 Basin 3 2 .2 5 .4 1.1 1.1 .93 .1 75 Basin 4 2 .4 3.2 .5 1.3 1.2 .92 .1 68 Basin 5 2 .5 .5 .8 1.8 1.5 .92 .1 78 Basin 6 2 1.2 3 2 2.5 2 .91 .1 78 Basin 7 2 3.1 6 3.6 4.5 5.1 .95 .15 83 Basin 8 2 1.3 4 2.5 2 3.1 .93 .1 65 Basin 9 2 5.1 1.35 .2 .6 .5 .94 .2 .70 Basin 10 2 .1 3.5 .2 .6 .5 .9 .1 <td< td=""><td>Basin 1</td><td>2]</td><td>.3861</td><td>1</td><td>2</td><td>2.5</td><td>3.00175</td><td>.9</td><td>.1</td><td>75</td><td>.2</td></td<>	Basin 1	2]	.3861	1	2	2.5	3.00175	.9	.1	75	.2
Basin 3 2 2 5 4 1.1 1.1 93 1 75 Basin 4 2 4 3.2 5 1.3 1.2 92 1 68 Basin 5 2 5 5 8 1.8 1.5 92 1 78 Basin 6 2 1.2 3 2 2.5 2 91 1 78 Basin 6 2 1.2 3 2 2.5 2 91 1 78 Basin 7 2 3.1 6 3.6 4.5 5.1 95 15 83 Basin 8 2 1.3 4 2.5 2 3.1 93 1 65 Basin 9 2 5.1 1.3 5 8.5 6.5 94 2 70 Basin 10 2 1 3.5 2 6 5 9 1 55 H = Index of Unit Hydrograph Method (1: SCS UH; 2: Clark UH) QB0 =	Basin 2	2	.1	2	.3	1	1	.95	.1	80	.2
Basin 4 2 .4 3.2 .5 1.3 1.2 .92 .1 68 Basin 5 2 .5 .5 .8 1.8 1.5 .92 .1 78 Basin 6 2 1.2 3 2 2.5 2 .91 .1 78 Basin 7 2 3.1 6 3.6 4.5 5.1 .92 .1 78 Basin 7 2 3.1 6 3.6 4.5 5.1 .95 .15 83 Basin 8 2 1.3 4 2.5 2 3.1 .93 .1 .65 Basin 9 2 5.1 1.3 5 8.5 6.5 .94 .2 .70 Basin 10 2 .1 3.5 .2 .6 .5 .9 .1 .55 IH = Index of Unit Hydrograph Method (1: SCS UH; 2: Clark UH) QB0 = Initial Baseflow (m^3/s or cfs) RB = Baseflow Recession Constant UP = Decender 10 Decender 10 Decender 10 Decender 10 <thdecender 10<="" th=""> Decender 10 <thde< td=""><td>Basin 3</td><td>2</td><td>.2</td><td>5</td><td>.4</td><td>1.1</td><td>1.1</td><td>.93</td><td>.1</td><td>75</td><td>.2</td></thde<></thdecender>	Basin 3	2	.2	5	.4	1.1	1.1	.93	.1	75	.2
Basin 5 2 .5 .5 .8 1.8 1.5 .92 .1 78 Basin 6 2 1.2 3 2 2.5 2 .91 .1 75 Basin 7 2 3.1 6 3.6 4.5 5.1 .95 .15 83 Basin 7 2 3.1 6 3.6 4.5 5.1 .95 .15 83 Basin 8 2 1.3 4 2.5 2 3.1 .93 .1 .65 Basin 9 2 5.1 1.3 5 8.5 6.5 .94 .2 .70 Basin 10 2 .1 3.5 .2 .6 .5 .9 .1 .55 H = Index of Unit Hydrograph Method (1: SCS UH; 2: Clark UH) QB0 = Initial Baseflow (m^3/s or cfs) RB = Baseflow Recession Constant H = a Basin Area (ha or mi^2) RB = Baseflow Recession Constant RB = Baseflow Recession Constant	Basin 4	2	.4	3.2	.5	1.3	1.2	.92	.1	68	.2
Basin 6 2 1.2 3 2 2.5 2 .91 .1 75 Basin 7 2 3.1 6 3.6 4.5 5.1 .95 .15 83 Basin 8 2 1.3 4 2.5 2 3.1 .93 .1 65 Basin 9 2 5.1 1.3 5 8.5 6.5 .94 .2 70 Basin 10 2 .1 3.5 .2 .6 .5 .9 .1 55 H = Index of Unit Hydrograph Method (1: SCS UH; 2: Clark UH) QB0 = Initial Baseflow (m [*] 3/s or cfs) RB = Baseflow Recession Constant B = Basen Area (ha or mi [*] 2) RB = Baseflow Recession Constant PHEF = P Sections PHEF = P Sections Noteshold View (P Bit ha the Beal	Basin 5	2	.5	.5	.8	1.8	1.5	.92	.1	78	.2
Basin 7 2 3.1 6 3.6 4.5 5.1 .95 .15 83 Basin 8 2 1.3 4 2.5 2 3.1 .93 .1 65 Basin 9 2 5.1 1.3 5 8.5 6.5 .94 .2 70 Basin 10 2 .1 3.5 .2 .6 .5 .9 .1 55 H = Index of Unit Hydrograph Method (1: SCS UH; 2: Clark UH) QB0 = Initial Baseflow (m [°] 3/s or cfs) RB = Baseflow Recession Constant RB = Baseflow Recession Constant B = Baser 4 ft or m [°] 2) RB = Baseflow Recession Constant RB = Baseflow Recession Constant RB = Baseflow Recession Constant	Basin 6	2	1.2	3	2	2.5	2	.91	.1	75	.2
Basin 8 2 1.3 4 2.5 2 3.1 .93 .1 65 Basin 9 2 5.1 1.3 5 8.5 6.5 .94 .2 70 Basin 10 2 .1 3.5 .2 .6 .5 .94 .2 70 H = Index of Unit Hydrograph Method (1: SCS UH; 2: Clark UH) QB0 = Initial Baseflow (m^3/s or cfs) RB = Baseflow Recession Constant H = Basin Area (ha or mi^2) RB = Baseflow Recession Constant Parenter UPE = Paseflow Twasheld View (Paties to the Paseflow Twasheld View (Paties to the Paseflow Recession Constant)	Basin 7	2	3.1	6	3.6	4.5	5.1	.95	.15	83	.2
Basin 9 2 5.1 1.3 5 8.5 6.5 .94 .2 70 Basin 10 2 .1 3.5 .2 .6 .5 .94 .2 70 Hasin 10 2 .1 3.5 .2 .6 .5 .9 .1 55 H4 = Basin Area (ha or mi^2) RB = Baseflow Recession Constant RB = Baseflow Recession Constant .6 .7 .7 .7	Basin 8	2	1.3	4	2.5	2	3.1	.93	.1	65	.2
Basin 10 2 .1 3.5 .2 .6 .5 .9 .1 55 H = Index of Unit Hydrograph Method (1: SCS UH; 2: Clark UH) QB0 = Initial Baseflow (m^3/s or cfs) RB = Baseflow Recession Constant RB = Baseflow Recession Constant HA = Basin Area (ha or mi^2) RB = Baseflow Recession Constant RB = Baseflow Recession Constant	Basin 9	2	5.1	1.3	5	8.5	6.5	.94	.2	70	.2
JH = Index of Unit Hydrograph Method (1: SCS UH; 2: Clark UH) QB0 = Initial Baseflow (m^3/s or cfs) HA = Basin Area (ha or mi^2) RB = Baseflow Recession Constant URL = Reserve to Directly Compared Integration Area (%) RTHE = Reserve to Science (%)	Basin 10	2	.1	3.5	.2	.6	.5	.9	.1	55	.2
F = Feiceric of Directly-Connected impervious Area (%) F = Time of Concentration (hr) CN = Curve Number CN = Curve Number Local Abstraction Coefficient (Default Value = 0.2	H = Index of Ur	nit Hydrograp a (ha or mi^2)	: SCS UH; 2: 1	Clark UH)	QB0 = Initial Baseflow (m [^] 3/s or cfs) RB = Baseflow Recession Constant RTHRE = Baseflow Threshold Value (Ratio to the Peak) CN = Curve Number						

🔽 Rainfall		×
Time steps	Rain (in) 🔺	Generate
1	0.78740	24-hr Rainfall
2	1.37795	
3	0.47244	Import from a
4	0.31496	Data File
5	0.00000	
6	0.00000	Export to an
7	0.00000	Output File
8	0.00000	
9	0.00000	Import from
10	0.00000	an Excel File
11	n nnnnn 💌	
OK)	Cancel	

×

N-Water									
	- Water Ta	ble for Subb	agin: 1						
				5.57.5	0.0	a	a a		
Step	1 (nr)	Kain(in)	Inr(1n)	Runr (1n)	C-Rain(in)	C-Inf(1n)	C-Runf (1n)	Q-Peak(CIS)	I-Peak(nr)
1	.100/	./8/402	./03102	.004220	./6/402	.703102	.004220	1./54959	1.203333
2	. 3333	1.377950	.91/342	. 100000	2.100002	1.00524	. 101020	20.270250	1 202222
3	.5000	214061	.204803	107557	2.057754	2 022720	./3240/	29.270339	1 202222
-	.0007	.314961	.11/404	.19/55/	2.952754	2.022730	930024	20.930242	1.203333
6	1 0000	.000000	.000000	.000000	2 952754	2.022730	930024	.000000	.000000
7	1 1667	.000000	.000000	.000000	2 952754	2 022730	930024	.000000	.000000
8	1 3333	.000000	.000000	.000000	2 952754	2 022730	930024	.000000	.000000
Ğ	1 5000	000000	000000	000000	2 952754	2 022730	930024	000000	000000
10	1.6667	.000000	.000000	.000000	2.952754	2.022730	.930024	.000000	.000000
11	1.8333	.000000	.000000	.000000	2,952754	2.022730	.930024	.000000	.000000
12	2.0000	.000000	.000000	.000000	2,952754	2.022730	.930024	.000000	.000000
13	2.1667	.000000	.000000	.000000	2,952754	2.022730	.930024	.000000	.000000
14	2.3333	.000000	.000000	.000000	2,952754	2.022730	.930024	.000000	.000000
15	2,5000	.000000	.000000	.000000	2,952754	2.022730	.930024	.000000	.000000
16	2.6667	.000000	.000000	.000000	2.952754	2.022730	.930024	.000000	.000000
17	2.8333	.000000	.000000	.000000	2.952754	2.022730	.930024	.000000	.000000
18	3.0000	.000000	.000000	.000000	2.952754	2.022730	.930024	.000000	.000000
19	3.1667	.000000	.000000	.000000	2.952754	2.022730	.930024	.000000	.000000
20	3.3333	.000000	.000000	.000000	2.952754	2.022730	.930024	.000000	.000000
21	3.5000	.000000	.000000	.000000	2.952754	2.022730	.930024	.000000	.000000
22	3.6667	.000000	.000000	.000000	2.952754	2.022730	.930024	.000000	.000000

CN-Flow								×
	- Flow Summar	y Table for S	Subbasin: 1					
Peak Ti	me (hour) =	2.166	57					
Peak Fl	ow (cfs) =	66.97862	22					
Step	Time(hr)	Rain(in)	Runoff-P(in)	Runoff-IMP(in)	Direct-Q(cfs)	Baseflow(cfs)	Total-Q(cfs)	
1	.16667	.787402	.004220	.007874	.019770	2.949499	2.969269	
2	.33333	1.377950	.460608	.013779	.845045	2.898158	3.743203	
3	.50000	.472441	.267638	.004724	3.495555	2.847710	6.343265	
4	.66667	.314961	.197557	.003150	8.183248	2.798141	10.981389	
5	.83333	.000000	.000000	.000000	14.537407	2.749434	17.286841	
6	1.00000	.000000	.000000	.000000	21.999426	2.701575	24.701001	
7	1.16667	.000000	.000000	.000000	30.216844	2.654549	32.871393	
8	1.33333	.000000	.000000	.000000	38.738695	2.608342	41.347037	
9	1.50000	.000000	.000000	.000000	46.816668	2.562939	49.379607	
10	1.66667	.000000	.000000	.000000	53.767044	2.518326	56.285370	
11	1.83333	.000000	.000000	.000000	59.197112	2.474490	61.671602	
12	2.00000	.000000	.000000	.000000	62.906268	2.431417	65.337686	
13	2.16667	.000000	.000000	.000000	64.589528	2.389094	66.978622	
14	2.33333	.000000	.000000	.000000	63.812315	2.347508	66.159822	
15	2.50000	.000000	.000000	.000000	61.059850	2.306645	63.366495	
16	2.66667	.000000	.000000	.000000	57.446502	2.266494	59.712996	
17	2.83333	.000000	.000000	.000000	53.740276	2.227041	55.967317	~

CN-QOutlet			
Flow	at Outlet	1	
Time(hr)	Q(cfs)		
.16667	2.969269		
.33333	3.743203		
.50000	6.343265		
.66667	10.981389		
.83333	17.286841		
1.00000	24.701001		
1.16667	32.871393		
1.33333	41.347037		
1.50000	49.379607		
1.66667	56.285370		
1.83333	61.671602		
2.00000	65.337686		
2.16667	66.978622		
2.33333	66.159822		
2.50000	63.366495		
2.66667	59.712996		
2.83333	55.967317		
3.00000	52.461436		_
3.16667	49.179915		×

Selection for Outlet Hydrograph	<
Selection for Outlet Hydrographs	
Outlet number 5	
[OK]	

9. Introduction to the Data Supporting System: Parameter Estimation

To facilitate parameter estimation, a comprehensive data supporting system is developed and incorporated in Hydrol-Inf. All parameters/data used in the model are detailed in the data supporting system. It covers all basic data information, tables, and figures related to soil properties and meteorologic conditions that are included in this document.

The data supporting system also includes links to some useful database websites concerning soils and climate.

🛃 Soil Websites		×
_ Soil Websites		
Q	USDA-NRCS National Soil Survey Geographic (SSURGO) Database	
Q	USDA-NRCS State Soil Geographic (STATSGO) Database	
	Close	

厊 Meteorologic D	atabase Websites	×
Climate Databa	ase Websites]
Q	NDAA National Climatic Data Center (NCDC)	
Q	USDA-NRCS National Water Climate Center PRISM	
Q	FAO Irrigation and Drainage Paper 56	
	Close	

10. Hydrologic Tools

10.1 Computation of Measured Flow

Computation of Discharge

Generally, both velocity and depth of a stream change significantly over a crosssectional area. The velocity near the water surface is greater than one close to the bottom and the water in the center of the stream flows faster than on the edges. Discharge of a stream through a cross-sectional area *A* can be expressed as:

$$Q = \iint_{A} V dA = \iint_{A} V(x, y) dx dy$$

in which Q = water discharge [L³/T]; V = velocity [L/T]; and A = area [L²].

A number of methods can be used for estimating discharge of a stream. Velocity-area methods are commonly used. Midsection method and mean-section method are two velocity-area methods and the former is generally recommended. As shown in the figure on the following page, the midsection method for calculating water discharge in a stream channel can be written as:

$$q_{i} = \overline{V_{i}}A_{i} = \overline{V_{i}}\left(\frac{L_{i+1} - L_{i}}{2} + \frac{L_{i} - L_{i-1}}{2}\right)d_{i} = \overline{V_{i}}\frac{L_{i+1} - L_{i-1}}{2}d_{i} \qquad (i = 2, 3, ..., n-1)$$

For the first and last sections, following equations are used for calculating the corresponding discharge (Gupta, 1989):

$$q_1 = \overline{V_1} \frac{L_2 - L_1}{2} d_1$$

in which $\overline{V_1} = 0.65 \overline{V_2}$

$$q_n = \overline{V_n} \, \frac{L_n - L_{n-1}}{2} \, d_n$$

in which $\overline{V}_n = 0.65 \overline{V}_{n-1}$ Hence, the total discharge can be given by:

$$Q = \sum_{i=1}^{n} q_i$$

in which q_i = water discharge of section $i [L^3/T]$; $\overline{V_i}$ = mean velocity at observation point/vertical i [L/T]; L_i = distance from the initial point to observation point/vertical i [L]; and d_i = depth of water at observation point/vertical i [L].

The number of observation points/verticals or the size of each section depends on the entire width of the stream, variability in the stream depth and velocity, and the degree of precision required (research purposes). Usually, the number of sections/verticals

may range from 5 to 20. Some references suggest that 20-30 verticals of equidistant or variable spacings be used to divide a stream width. These spacings also should be arranged so that no section contains more than 10% of the total flow.

Computation of Mean Velocity:

(1) One-Point Method (0.6D): A velocity is measured at a depth of 0.6D (D is the total depth of water) and it is assumed that this velocity is equal to the mean velocity as shown in the flowing equation. This method is suitable for $D \le 2 ft$

$$\overline{V_i} = v_i^{0.6D}$$

(2) Two-Point Method (0.2D & 0.8D): Two velocities are measured at depths of 0.2D and 0.8D. The mean velocity is estimated as follows. This method is suitable for D = 2 - 10 ft

$$\overline{V_i} = \frac{1}{2} v_i^{0.2D} + \frac{1}{2} v_i^{0.8D}$$

(3) Three-Point Method (0.2D, 0.6D, & 0.8D): Three velocities are measured at depths of 0.2D, 0.6D, and 0.8D. The mean velocity is estimated as follows. This method is suitable for D = 10 - 20 ft

$$\overline{V_i} = \frac{1}{4}v_i^{0.2D} + \frac{1}{2}v_i^{0.6D} + \frac{1}{4}v_i^{0.8D}$$

(4) 0.2-Depth Method (0.2D): In this method, it is assumed that the mean velocity equals 0.87 of the velocity measured at a depth of 0.2D.

$$\overline{V_i} = \alpha v_i^{0.2D} = 0.87 v_i^{0.2D}$$

The first two methods are widely used in practice.

Computation of Other Hydraulic Parameters:

(1) Overall Average Velocity:

$$\overline{V} = \frac{Q}{A} = \sum_{i=1}^{n} q_i \left/ \sum_{i=1}^{n} A_i \right.$$

(2) Wetted Perimeter:

$$WP = d_1 + \sum_{i=2}^{n} \sqrt{\left(d_i - d_{i-1}\right)^2 + \left(L_i - L_{i-1}\right)^2} + d_n$$

(3) Hydraulic Radius:

$$R = \frac{A}{WP}$$

(4) Conveyance Factor:

$$f_{K} = AR^{2/3}$$

(5) Slope-Roughness Factor:

$$f_{sr} = \frac{Q}{AR^{2/3}}$$

Computation of Measured Flow
Total number of measured points [10 (N >= 3)
Selection of Unit System
SI Unit System (metric)
US Customary Unit System (English)
Selection of Mean Velocity Computation Methods C One-Point Method (0.6D Velocity) Three-Point Method (0.2D, 0.6D, 0.8D Velocities). including Mixed 1-, 2-, 3-Point Methods
OK Cancel

10.2 Time of Concentration Calculator

Time of concentration can be estimated by using the following methods depending upon actual conditions (ASCE, 1996; USDA, 1986; Wanielista et al., 1997).

1) Kirpich

$$T_c = 0.0078 \frac{L^{0.77}}{S^{0.385}}$$

where L = length of flow (ft) and S = slope (ft/ft)

Application Conditions: small rural basins (1.2-112 acres); steep slopes (3%-10%); overland flow on bare soil; for overland flow on concrete or asphalt surfaces multiply by 0.4; for concrete channels multiply by 0.2.

2) Izzard

$$T_{c} = \frac{41.025(0.0007i + c_{r})L^{\frac{1}{3}}}{S^{\frac{1}{3}}i^{\frac{1}{3}}}$$

where i = rainfall intensity (in/hr), $c_r = \text{retardation coefficient}$, L = length of flow (ft), and S = slope (ft/ft)

Application Conditions: overland flow on roadway and turf surface; iL < 500 in. ft/hr; Requires iteration; $c_r = 0.007$ for very smooth pavement (asphalt); $c_r =$ 0.0075 for tar and sand pavement; $c_r = 0.012$ for concrete pavement; $c_r = 0.06$ for dense turf.

3) Kerby

 $T_c = 0.8262 \frac{L^{0.467} n^{0.467}}{S^{0.2335}}$

where n = Manning roughness coefficient or retardation coefficient, L = length of flow (ft), and S = mean slope of the basin (ft/ft).

Application Conditions: overland flow on small watersheds (<4.047 ha or 10 ac); L< 1000 ft; n = 0.02 for smooth pavement; n = 0.3 for poor grass; n = 0.4 for average grass; n = 0.8 for dense grass.

4) Federal Aviation Agency

$$T_c = \frac{0.3884(1.1 - C)L^{0.5}}{S^{0.333}}$$

where C = rational runoff coefficient, L = length of overland flow (ft), and S = average overland slope (ft/ft).

Application Conditions: overland flow; frequently used for urban basins.

5) Kinematic Wave

$$T_c = \frac{0.93L^{0.6}n^{0.6}}{i^{0.4}S^{0.3}}$$

where n = Manning roughness coefficient for overland flow, L = length of overland flow (ft), i = rainfall intensity (in/hr), and S = average overland slope (ft/ft).

Application Conditions: overland flow; L < 300 ft; requires iteration.

6) SCS Lag Equation

$$T_{c} = \frac{L^{0.8} \left(\frac{1000}{CN} - 9\right)^{0.7}}{189.62 \,\mathrm{S}^{0.5}}$$

where L = watershed hydraulic length (ft), CN = runoff curve number, and S = average watershed slope (ft/ft).

Application Conditions: agricultural watersheds; small urban basins (< 2000 acres); assuming $T_c = 1.67 T_L$.

7) NRCS TR-55

Sheet flow travel time (min), T_{st}

$$T_{st} = \frac{0.42(n_{st}L_{st})^{0.5}}{P_2^{0.5}S_{st}^{0.4}}$$

where n_{st} = Manning's roughness coefficient for sheet flow, L_{st} = sheet flow length (ft) ($L_{st} \leq 300$ ft); P_2 = 2-year, 24-hour rainfall (in), and S_{st} = slope of hydraulic grade line (land slope, ft/ft).

Shallow concentrated flow travel time (min), T_{sc}

$$T_{sc} = \frac{L_{sc}}{60 C_c S_{sc}^{0.5}}$$

where L_{sc} = shallow concentrated flow length (ft), C_c = channel type coefficient (unpaved channel: C_c = 16.1345; paved channel: C_c = 20.3282), and S_{sc} = slope of hydraulic grade line (watercourse slope, ft/ft). Open Channel flow travel time (min), T_{oc}

 $T_{oc} = \frac{L_{oc} n_{oc} P_w^{\frac{2}{3}}}{89.4 A_c^{\frac{2}{3}} S_{oc}^{\frac{1}{2}}}$

where L_{oc} = open channel flow length (ft), n_{oc} = Manning's roughness coefficient for open channel flow, P_w = wetted perimeter (ft), A_c = cross sectional area (ft²), and S_{oc} = slope of hydraulic grade line (channel slope, ft/ft).

Total time of concentration (min), T_c

 $T_c = T_{st} + T_{sc} + T_{oc}$

Application Conditions: Movement of the surface water in a watershed is characterized by three major types of flow: sheet flow, shallow concentrated flow, and open channel flow; after a maximum of 300 ft, sheet flow becomes shallow concentrated flow; steady uniform sheet flow.

🚰 Time of Concentration Calculator	×
Selection of Time of Concentration Formula	
Kirpich	
Kirpich	
Kirpich Izzard Kerby Federal Aviation Agency Kinematic Wave SCS Lag Equation NRCS TR-55	
Close	

5	Kirpich		×
	- Kirpich Tc (min)-]
	Equations	$T_c = 0.0078 \frac{L}{S^{0.385}}$ $L = \text{length of flow (ft)}$ $S = \text{slope (ft/ft)}$	
	Application Conditions	Small rural basins (1.2 - 112 acres); Steep slopes (3% - 10%); Overland flow on bare soil; For overland flow on concrete or asphalt surfaces, multiply by 0.4; For concrete channels, multiply by 0.2.	
	L (ft)	2000 Time of Concentration (min)	
	S (ft/ft)	0.03	
		Close	

5	Izzard		×
	-Izzard Tc (min)		7
	Equations	$T_{c} = \frac{41.025(0.0007i + c_{r})L^{k}}{S^{k}i^{k}}$ i = rainfall intensity (in/hr) cr = retardation coefficient L = length of flow (ft) S = slope (ft/ft)	
	Application Conditions	Overland flow on roadway and turf surface; iL < 500 in. ft/hr; Requires iteration; cr = 0.007 for very smooth pavement (asphalt); cr = 0.0075 for tar and sand pavement; cr = 0.012 for concrete pavement; cr = 0.06 for dense turf.	
	i (in/hr)	1.0	
	cr	0.06 Time of Concentration (min)	
	L (ft)	2000 Compute 100.935993981808	
	S (ft/ft)	0.03	
		Close	

🛃 Kerby		X
Kerby Tc (min) —		1
Equations	$T_{c} = 0.8262 \frac{L^{0.467} n^{0.467}}{S^{0.2335}}$ L = length of flow (ft) S = mean slope of the basin (ft/ft) n = Manning roughness coefficient or retardation coefficient	
Application Conditions	Overland flow on small watersheds (< 4.047 ha or 10 ac); L < 1000 ft; n = 0.02 for smooth pavement; n = 0.3 for poor grass; n = 0.4 for average grass; n = 0.8 for dense grass.	
L (ft)	2000 Time of Concentration (min)	
S (ft/ft)	0.03 Compute 42 5030799121429	
n	0.4	
	Close	

5	Federal Aviation	Agency	×
	- Federal Aviation A	gency Tc (min)	
	Equations	$T_{c} = \frac{0.3884(1.1 - C)L^{0.5}}{S^{0.333}}$ L = length of overland flow (ft) S = average overland slope (ft/ft) C = rational runoff coefficient	
	Application Conditions	Overland flow; Frequently used for urban basins.	
	L (ft)	2000	
	S (ft/ft)	0.03 Compute	
	С	0.8	
		Close	

3	Kinematic Wave				x
	-Kinematic Wave 1	c (min)			7
	Equations	$T_{c} = \frac{0.93L^{0.6}n^{0.6}}{i^{0.4}S^{0.3}}$	L = length of o S = average o n = Manning ro overland flow i = rainfall inter	verland flow (ft) verland slope (ft/ft) oughness coefficient for sity (in/hr)	
	Application Conditions	Overland flow; L < 300 ft; Requires iteration.		▲ ▼	
	L (ft)	2000			
	S (ft/ft)	0.03		Time of Concentration (min)	
	n	0.45		157.721928193408	
	i (in/hr)	1.0			
			Close		

3	SCS Lag Equation	n				X
	SCS Lag Equation	Tc (min)				1
	Equations	$T_{c} = \frac{L^{0.8} \left(\frac{1000}{CN}\right)}{189.62}$	- 9) ^{0,7} S ^{0,5}	L = wal S = ave CN = ru	tershed hydraulic length (ft) erage watershed slope (ft/ft) unoff curve number	
	Application Conditions	Agricultural watershe Assuming Tc = 1.67	ds; small urb TL.	an basins	(< 2000 acres);	
	L (ft)	2000			Time of Concentration (min) 27.1352284680605	
	S (ft/ft)	0.03	Com	oute	Lag Time (min)	
	CN	85			16.2485730962985	
			Close			

SNRCS TR-55		×
Equations	$T_{st} = \frac{0.42(n_{st}L_{st})^{0.8}}{P_2^{0.5}S_{st}^{0.4}} \qquad T_{sc} = \frac{L_{sc}}{60C_c S_{sc}^{0.5}} \qquad T_{oc} = \frac{L_{oc}n_{oc}P_w^{-3/4}}{89.4A_c^{-3/2}S_{oc}^{-3/4}}$	
Remarks Notations	Lsc = shallow concentrated flow length (ft) Cc = channel type coefficient (unpaved channel: Cc = 16.1345; paved channel: Cc = 20.3282) Ssc = slope of hydraulic grade line (watercourse slope, ft/ft) Loc = open channel flow length (ft) noc = Manning's roughness coefficient for open channel flow	
- Sheet Flow T	st (min)	
Lst (ft)	200 nst 0.45 Sheet Flow T st (min)	
Sst(ft/ft)	0.005 P2 (in) 2.5 Compute 80.9254814589998	
- Shallow Conc	entrated Flow Tsc (min)	
Lsc (ft)	3000 Shallow Concentrated Flow Tsc (min)	
Ssc (ft/ft)	Cc 16.1345 Compute 30.9894945613437	
Open Channe	el Flow Toc (min)	
Loc (ft)	noc 0.02 Open Channel Flow Tsc (min) 15000 Pw (ft) 15	
Soc (ft/ft)	0.03 Ac (ft2) 25	
	ime of Concentration (Tst + Tsc + Toc) (min) 125.697112529482	
	Close	

10.3 24-Hour Rainfall Generator

For a designed rainfall (2-year, 5-year, 10-year, 25-year, 50-year, or 100-year), the USDA-NRCS (SCS) 24-rainfall distributions (USDA, 1986) can be applied to generate the corresponding rainfall time series. In this tool, three parameters need to be specified, which include the number of time points for 24 hours, type of the rainfall distribution (I, II, III, or IA), and the total 24-hour rainfall. The relevant information can be easily accessed via buttons on the interface of the tool. The calculated 24-hour rainfall can also be exported to an EXCEL file.

SNRCS 24-hr Rainfall Generator

		Step	Time(hr)	Rainfall	٠
Number of time steps (NTP=24/DT]	1	0.2400	0.01409	
100		2	0.4800	0.01468	
		3	0.7200	0.01479	
NRCS 24-hour rainfall distribution		4	0.9600	0.01550	
type (1-1; 2-11; 3-111; 4-1A)		5	1.2000	0.01550	
2	Compute	6	1.4400	0.01608	
2	S	7	1.6800	0.01608	
		8	1.9200	0.01679	
Designed 24-hour rainfall (in or cm)		9	2.1600	0.01691	
5.87		10	2.4000	0.01749	
		11	2.6400	0.01749	
		12	2.8800	0.01796	
Show US 24-Hour Rainfall Distribution Mon		13	3.1200	0.01831	
Discibution Map		14	3.3600	0.01867	
		15	3.6000	0.01914	
Charry LIC 24 Liana Daimfall	Export the 24-hr	16	3.8400	0.01914	
Show US 24-Hour Kainrali	Rainfall to a File	17	4.0800	0.01972	
		18	4.3200	0.02043	
		19	4.5600	0.02113	
Show 24-Hour Rainfall		20	4.8000	0.02113	
Distribution Types		21	5 0400	0.02254	•
	Close				

X

11. Help and Documentation

11.1 Help System

The help system covers all major topics associated with use of the model, input data and parameter estimation, as well as hydrologic tools and documentation. Users can find the answers to most of their questions from the help system.

Help Topics: HYDROL-INF Help Contents	? ×
Contents Index Find	
Click a book, and then click Open. Or click another tab, such as Index. Click a book, and then click Open. Or click another tab, such as Index. Click a book, and then click Open. Or click another tab, such as Index. Click a book, and then click Open. Or click another tab, such as Index. Click a book, and then click Open. Or click another tab, such as Index. Click a book, and then click Open. Or click another tab, such as Index. Click a book, and then click Open. Or click another tab, such as Index. Click a book, and then click Open. Or click another tab, such as Index. Click a book, and then click Open. Or click another tab, such as Index. Click a book, and then click Open. Or click another tab, such as Index. Click a book, and then click Open. Or click another tab, such as Index. Click a book, and then click Open. Or click another tab, such as Index. Click a book, and then click Open. Or click another tab, such as Index. Click a book, and then click Open. Or click another tab, such as Index. Click a book, and then click Open. Or click another tab, such as Index. Click a book, and then click Open. Or click another tab, such as Index. Click a book, and then click Open. Click a book, and then click Open. Or click another tab, such as Index. Click a book, and then click Open. Click a book,	
Open Print Canc	el

Help Topics: HYDROL-INF Help Contents
Contents Index Find
1 Type the first few letters of the word you're looking for.
Click the index entry you want, and then click Display.
Actual Crop Evapotranspiration
Capillary Head C-ET
C-ETS C-GW
Check C-Infil
C-Rain Crop Coefficient
C-Runf
Default Directory
Determination of Ponding Condition
Documentation D-Stg
Display Print Cancel

11.2 Documentation and Support

This User's Manual is the primary documentation. To help users understand the underlying theoretical background, relevant papers also are included in this Windows-based model. Additionally, users can visit our Hydrol-Inf website to check any updated information. Limited technical support can be available via e-mail (xuefeng.chu@ndsu.edu). Any comments and improvement suggestions on HYDROL-INF are greatly appreciated.

3	Documentatio	n	×
	Documentation		
	ROF	Introduction	
	PDF	User's Manual	
		Reference Paper 1: Chu, Xuefeng and M. A. Marino. 2005. Journal of Hydrology, 313:195-207.	
	POF	Reference Paper 2: Chu, Xuefeng and M.A. Marino. 2006. Proceedings of the 2006 World Environmental and Water Resources Congress, ASCE.	
	Addee	Flow Measurement Form - SI Units	
	Addae	Flow Measurement Form - English Units	
		Close	_

🛐 About Hydrol-Inf		×
Contact Information	HYDROL-INF Modeling Sy Version 6.10 November 1, 2011 Dr. Xuefeng Chu, Department o (Dept 2470), North Dakota Stai Box 6050, Fargo, ND 58108-60 E-mail: xuefeng.chu@ndsu.edu	ystem (new) of Civil Engineering te University, PO 150
Copyright 2004-2 This Windows-bas Any comments and	011. All Rights Reserved ed model is provided "as is." I suggestions are appreciated	OK System Info

12 References

- Allen, R.G., L.S. Pereira, D. Raes, and M. Smith. 1998. FAO Irrigation and Drainage Paper No. 56, Crop Evapotranspiration (Guidelines for computing crop water requirements).
- ASCE. 1996. hydrology Handbook, 2nd Edition. ASCE Manuals and Reports on Engineering Practice No. 28. American Sciety of Civil Engineers. New York.
- Carsel, R.F., J.C. Imhoff, P.R. Hummel, J.M. Cheplick, and A.S. Donigian, Jr. 2003. PRZM-3, A Model for Predicting Pesticide and Nitrogen Fate in the Crop Root and Unsaturated Soil Zones: Users Manual for Release 3.12. National Exposure Research Laboratory, USEPA.
- Carsel, R.F. and R.S. Parrish. 1988. Developing joint probability distributions of soil water retention characteristics. Water Resource Research, 24:755-769.
- Chu, X. and M.A. Mariño. 2005. Determination of ponding condition and infiltration into layered soils under unsteady rainfall. Journal of Hydrology, 313(3-4):195-207.
- Gupta, R.S. 1989. Hydrology and Hydraulic Systems. Prentice Hall, New Jersey.
- Maidment, D. R., 1993. Handbook of Hydrology. McGraw-Hill, Inc. New York.
- Rawls, W.J. and D.L. Brakensiek. 1983. A procedure to predict Green and Ampt infiltration parameters. In: Advances in infiltration: proceedings of the National Conference on Advances in Infiltration, American Society of Agricultural Engineers, pp. 102-112.
- Rawls, W.J., D.L. Brakensiek, and K.E. Saxton. 1982. Estimation of Soil Water Properties. Transactions of the ASAE, 25(5):1316-1320, 1328.
- USDA. 1986. Urban Hydrology for Small Watersheds, Technical Release 55 (TR-55). Natural Resources Conservation Services.
- Wanielista, M., R. Kersten, and R. Eaglin. 1997. Hydrology: Water Quantity and Quality Control, 2nd Edition. John Wiley & Sons, Inc. New York.

Appendix 1. Tables

Soil Texture Class	KS (cm/hr) ^a	KS (cm/hr) ^{b, c}
Sand	29.7	23.56
Loamy Sand	14.59	5.98
Sandy Loam	4.42	2.18
Loam	1.04	1.32
Silt	0.25	
Silt Loam	0.45	0.68
Sandy Clay Loam	1.31	0.30
Clay Loam	0.26	0.20
Silty Clay Loam	0.07	0.20
Sandy Clay	0.12	0.12
Silty Clay	0.02	0.10
Clay	0.20	0.06

Table 1 Saturated Hydraulic Conductivity KS (cm/hr)

^a Carsel and Parrish, 1988. ^b Rawls and Brakensiek, 1983. ^c Maidment, 1993.

Table 2 Capillary Head HWT (cm)

Soil Texture Class	HWT (cm) $^{a, b}$
Sand	4.95 (0.97-25.36)
Loamy Sand	6.13 (1.35-27.94)
Sandy Loam	11.01 (2.67-45.47)
Loam	8.89 (1.33-59.38)
Silt Loam	16.68 (2.92-95.39)
Sandy Clay Loam	21.85 (4.42-108.0)
Clay Loam	20.88 (4.79-91.10)
Silty Clay Loam	27.30 (5.67-131.50)
Sandy Clay	23.90 (4.08-140.2)
Silty Clay	29.22 (6.13-139.4)
Clay	31.63 (6.39-156.5)

^a Rawls and Brakensiek, 1983. ^b Maidment, 1993.

Table 3 Saturated	Water	Content	WS	(cm^3/cm^3))
-------------------	-------	---------	----	---------------	---

Soil Texture Class	WS $(cm^3/cm^3)^a$
Sand	0.43
Loamy Sand	0.41
Sandy Loam	0.41

~

Loam	0.43
Silt	0.46
Silt Loam	0.45
Sandy Clay Loam	0.39
Clay Loam	0.41
Silty Clay Loam	0.43
Sandy Clay	0.38
Silty Clay	0.36
Clay	0.38

^a Carsel and Parrish, 1988.

Soil Texture Class	WR $(cm^3/cm^3)^a$
Sand	0.045
Loamy Sand	0.057
Sandy Loam	0.065
Loam	0.078
Silt	0.034
Silt Loam	0.067
Sandy Clay Loam	0.100
Clay Loam	0.095
Silty Clay Loam	0.089
Sandy Clay	0.100
Silty Clay	0.070
Clay	0.068

Table 4 Residual Water Content WR (cm³/cm³)

^a Carsel and Parrish, 1988.

Soil Type	VN
Sand	2.68
Loamy Sand	2.28
Sandy Loam	1.89
Loam	1.56
Silt	1.37
Silt Loam	1.41
Sandy Clay Loam	1.48
Clay Loam	1.31
Silty Clay Loam	1.23
Sandy Clay	1.23
Silty Clay	1.09
Clay	1.09

Table 5 Soil Water Retention Parameter n VN^a

^a Carsel and Parrish, 1988.

Soil Type	α (1/cm) ^a
Sand	0.145
Loamy Sand	0.124
Sandy Loam	0.075
Loam	0.036
Silt	0.016
Silt Loam	0.020
Sandy Clay Loam	0.059
Clay Loam	0.019
Silty Clay Loam	0.010
Sandy Clay	0.027
Silty Clay	0.005
Clay	0.008

Table 6 Soil Water Retention Parameter α ALF (1/cm) a

^a Carsel and Parrish, 1988.

Soil Texture Class	Textural Properties (%)			FC (Water Retained
	Sand	Silt	Clay	at -0.33 Bar Tension)
Sand	85-100	0-15	0-10	0.091 (0.018-0.164)
Loamy Sand	70-90	0-30	0-15	0.125 (0.060-0.190)
Sandy Loam	45-85	0-50	0-20	0.207 (0.126-0.288)
Loam	25-50	28-50	8-28	0.270 (0.195-0.345)
Silt Loam	0-50	50-100	8-28	0.330 (0.258-0.402)
Sandy Clay Loam	45-80	0-28	20-35	0.257 (0.186-0.324)
Clay Loam	20-45	15-55	28-50	0.318 (0.250-0.386)
Silty Clay Loam	0-20	40-73	28-40	0.366 (0.304-0.428)
Sandy Clay	45-65	0-20	35-55	0.339 (0.245-0.433)
Silty Clay	0-20	40-60	40-60	0.387 (0.332-0.442)
Clay	0-45	0-40	40-100	0.396 (0.326-0.466)

Table 7 Field Capacity FC (cm³/cm³)^a

^a Rawls et al., 1982.

Soil Texture Class	Textural Properties (%)			WP (Water Retained
	Sand	Silt	Clay	at -15.0 Bar Tension)
Sand	85-100	0-15	0-10	0.033 (0.007-0.059)
Loamy Sand	70-90	0-30	0-15	0.055 (0.019-0.091)
Sandy Loam	45-85	0-50	0-20	0.095 (0.031-0.159)

Table 8 Wilting Point WP (cm³/cm³) ^a

Loam	25-50	28-50	8-28	0.117 (0.069-0.165)
Silt Loam	0-50	50-100	8-28	0.133 (0.078-0.188)
Sandy Clay Loam	45-80	0-28	20-35	0.148 (0.085-0.211)
Clay Loam	20-45	15-55	28-50	0.197 (0.115-0.279)
Silty Clay Loam	0-20	40-73	28-40	0.208 (0.138-0.278)
Sandy Clay	45-65	0-20	35-55	0.239 (0.162-0.316)
Silty Clay	0-20	40-60	40-60	0.250 (0.193-0.307)
Clay	0-45	0-40	40-100	0.272 (0.208-0.336)

^a Rawls et al., 1982.

Table 9 Crop Coefficients and Mean Maximum Plant Heights ^a

Crop	Kc ini ¹	Kc mid	Kc end	Maximum Crop Height h (m)
a. Small Vegetables	0.7	1.05	0.95	
Broccoli		1.05	0.95	0.3
Brussel Sprouts		1.05	0.95	0.4
Cabbage		1.05	0.95	0.4
Carrots		1.05	0.95	0.3
Cauliflower		1.05	0.95	0.4
Celery		1.05	1.00	0.6
Garlic		1.00	0.70	0.3
Lettuce		1.00	0.95	0.3
Onions - dry - green - seed		1.05 1.00 1.05	0.75 1.00 0.80	0.4 0.3 0.5
Spinach		1.00	0.95	0.3
Radish		0.90	0.85	0.3
b. Vegetables – Solanum Family (<i>Solanaceae</i>)	0.6	1.15	0.80	
Egg Plant		1.05	0.90	0.8
Sweet Peppers (bell)		1.05 ²	0.90	0.7
Tomato		1.15 ²	0.70-0.90	0.6
c. Vegetables – Cucumber Family (<i>Cucurbitaceae</i>)	0.5	1.00	0.80	
Cantaloupe	0.5	0.85	0.60	0.3

Cucumber - Fresh Market	0.6	1.00^{2}	0.75	0.3
- Machine harvest	0.5	1.00	0.90	0.3
Pumpkin, Winter Squash		1.00	0.80	0.4
Squash, Zucchini		0.95	0.75	0.3
Sweet Melons		1.05	0.75	0.4
Watermelon	0.4	1.00	0.75	0.4
d. Roots and Tubers	0.5	1.10	0.95	
Beets, table		1.05	0.95	0.4
Cassava - year 1 - year 2	0.3 0.3	0.80^{3} 1.10	0.30 0.50	1.0 1.5
Parsnip	0.5	1.05	0.95	0.4
Potato		1.15	0.75^{4}	0.6
Sweet Potato		1.15	0.65	0.4
Turnip (and Rutabaga)		1.10	0.95	0.6
Sugar Beet	0.35	1.20	0.70^{5}	0.5
e. Legumes (Leguminosae)	0.4	1.15	0.55	
Beans, green	0.5	1.05 ²	0.90	0.4
Beans, dry and Pulses	0.4	1.15 ²	0.35	0.4
Chick pea		1.00	0.35	0.4
Fababean (broad bean) - Fresh - Dry/Seed	0.5	1.15 ² 1.15	1.10 0.30	0.5 0.5
Grabanzo	0.4	1.15	0.35	0.8
Green Gram and Cowpeas		1.05	0.60-0.35 ⁶	0.4
Groundnut (Peanut)		1.15	0.60	0.4
Lentil		1.10	0.30	0.5
Peas - Fresh - Dry/Seed	0.5	1.15 ² 1.15	1.10 0.30	0.5 0.5
Soybeans		1.15	0.50	0.5-1.0
f. Perennial Vegetables (with winter dormancy and initially bare or mulched soil)	0.5	1.00	0.80	
Artichokes	0.5	1.00	0.95	0.7
Asparagus	0.5	0.957	0.30	0.2-0.8
Mint	0.6	1.15	1.10	0.6-0.8
Strawberries	0.4	0.85	0.75	0.2
g. Fibre Crops	0.35			
Cotton		1.15-1.2	0.70-0.50	1.2-1.5
--	----------------------	----------------------------	---	-------------------
Flax		1.10	0.25	1.2
Sisal ⁸		0.4-0.7	0.4-0.7	1.5
h. Oil Crops	0.35	1.15	0.35	
Castorbean (Ricinus)		1.15	0.55	0.3
Rapeseed, Canola		1.00-1.15 ⁹	0.35	0.6
Safflower		1.00-1.15 ⁹	0.25	0.8
Sesame		1.10	0.25	1.0
Sunflower		1.00-1.15 ⁹	0.35	2.0
i. Cereals	0.3	1.15	0.4	
Barley		1.15	0.25	1
Oats		1.15	0.25	1
Spring Wheat		1.15	$0.25 - 0.4^{10}$	1
Winter Wheat - with frozen soils - with non-frozen soils	0.4 0.7	1.15 1.15	$\begin{array}{c} 0.25 \text{-} 0.4^{10} \\ 0.25 \text{-} 0.4^{10} \end{array}$	1
Maize, Field (grain) (field corn)		1.20	$0.60, 0.35^{11}$	2
Maize, Sweet (sweet corn)		1.15	1.05 ¹²	1.5
Millet		1.00	0.30	1.5
Sorghum - grain - sweet		1.00-1.10 1.20	0.55 1.05	1-2 2-4
Rice	1.05	1.20	0.90-0.60	1
j. Forages				
Alfalfa Hay - averaged cutting effects - individual cutting periods - for seed	0.40 0.40 0.40	0.95 1.20 0.50	0.90 1.15 0.50	0.7 0.7 0.7
Bermuda hay - averaged cutting effects - Spring crop for seed	0.55 0.35	1.00 0.90	0.85 0.65	0.35 0.40
Clover hay, Berseem - averaged cutting effects - individual cutting periods	$0.40 \\ 0.40^{14}$	0.90^{13} 1.15^{14}	$0.85 \\ 1.10^{14}$	0.6 0.6
Rye Grass hay - averaged cutting effects	0.95	1.05	1.00	0.3
Sudan Grass hay (annual) - averaged cutting effects - individual cutting periods	$0.50 \\ 0.50^{14}$	0.90^{14} 1.15^{14}	$0.85 \\ 1.10^{14}$	1.2 1.2
Grazing Pasture - Rotated Grazing - Extensive Grazing	0.40 0.30	0.85-1.05 0.75	0.85 0.75	0.15-0.30 0.10

Turf grass - cool season ¹⁵ $_{15}$	0.90	0.95	0.95	0.10
- warm season ¹³	0.80	0.85	0.85	0.10
k. Sugar Cane	0.40	1.25	0.75	3
1. Tropical Fruits and Trees				
Banana - 1 st year	0.50	1.10	1.00	3
- 2 nd year	1.00	1.20	1.10	4
Cacao	1.00	1.05	1.05	3
Coffee - bare ground cover	0.90	0.95	0.95	2-3
- with weeds	1.05	1.10	1.10	2-3
Date Palms	0.90	0.95	0.95	8
Palm Trees	0.95	1.00	1.00	8
Pineapple ¹⁶ - bare soil	0.50	0.30	0.30	0.6-1.2
- with grass cover	0.50	0.50	0.50	0.6-1.2
Rubber Trees	0.95	1.00	1.00	10
Tea - non-shaded	0.95	1.00	1.00	1.5
- shaded ¹⁷	1.10	1.15	1.15	2
m. Grapes and Berries				
Berries (bushes)	0.30	1.05	0.50	1.5
Grapes - Table or Raisin	0.30	0.85	0.45	2
- Wine	0.30	0.70	0.45	1.5-2
Hops	0.3	1.05	0.85	5
n. Fruit Trees				
Almonds, no ground cover	0.40	0.90	0.65^{18}	5
Apples, Cherries, Pears ¹⁹				
-no ground cover, killing frost	0.45	0.95	0.70^{18}	4
-no ground cover, no frosts	0.60	0.95	0.75^{18}_{10}	4
-active ground cover, killing frost	0.50	1.20	0.95^{18}_{18}	4
-active ground cover, no frosts	0.80	1.20	0.8518	4
Apricots, Peaches, Stone Fruit ^{19, 20}				
-no ground cover, killing frost	0.45	0.90	0.65^{18}	3
-no ground cover, no frosts	0.55	0.90	0.65^{18}	3
-active ground cover, killing frost	0.50	1.15	0.90^{18}	3
-active ground cover, no frosts	0.80	1.15	0.85^{18}	3
Avocado, no ground cover	0.60	0.85	0.75	3
Citrus, no ground cover ²¹				
- 70% canopy	0.70	0.65	0.70	4
- 50% canopy	0.65	0.60	0.65	3
- 20% canopy	0.50	0.45	0.55	2

Citrus, with active ground cover or weeds ²²				
- 70% canopy	0.75	0.70	0.75	4
- 50% canopy	0.80	0.80	0.80	3
- 20% canopy	0.85	0.85	0.85	2
Conifer Trees ²³	1.00	1.00	1.00	10
Kiwi	0.40	1.05	1.05	3
Olives (40 to 60% ground coverage by canopy) ²⁴	0.65	0.70	0.70	3-5
Pistachios, no ground cover	0.40	1.10	0.45	3-5
Walnut Orchard ¹⁹	0.50	1.10	0.65^{18}	4-5
o. Wetlands – temperate climate				
Cattails, Bulrushes, killing frost	0.30	1.20	0.30	2
Cattails, Bulrushes, no frost	0.60	1.20	0.60	2
Short Veg., no frost	1.05	1.10	1.10	0.3
Reed Swamp, standing water	1.00	1.20	1.00	1-3
Reed Swamp, moist soil	0.90	1.20	0.70	1-3
p. Special				
Open Water, < 2 m depth or in subhumid climates or tropics		1.05	1.05	
Open Water, > 5 m depth, clear of turbidity, temperate climate		0.65 ²⁵	1.25 ²⁵	

- 1. These are general values for Kc ini under typical irrigation management and soil wetting. For frequent wettings such as with high frequency sprinkle irrigation or daily rainfall, these values may increase substantially and may approach 1.0 to 1.2. Kc ini is a function of wetting interval and potential evaporation rate during the initial and development periods and is more accurately estimated using Figures 29 and 30, or Equation 7-3 in Annex 7, or using the dual Kcb ini + Ke.
- 2. Beans, Peas, Legumes, Tomatoes, Peppers and Cucumbers are sometimes grown on stalks reaching 1.5 to 2 meters in height. In such cases, increased Kc values need to be taken. For green beans, peppers and cucumbers, 1.15 can be taken, and for tomatoes, dry beans and peas, 1.20. Under these conditions h should be increased also.
- 3. The midseason values for cassava assume non-stressed conditions during or following the rainy season. The Kc end values account for dormancy during the dry season.
- 4. The Kc end value for potatoes is about 0.40 for long season potatoes with vine kill.
- 5. This Kc end value is for no irrigation during the last month of the growing season. The Kc end value for sugar beets is higher, up to 1.0, when irrigation or significant rain occurs during the last month.
- 6. The first Kc end is for harvested fresh. The second value is for harvested dry.

- 7. The Kc for asparagus usually remains at Kc ini during harvest of the spears, due to sparse ground cover. The Kc mid value is for following regrowth of plant vegetation following termination of harvest of spears.
- 8. Kc for sisal depends on the planting density and water management (e.g., intentional moisture stress).
- 9. The lower values are for rainfed crops having less dense plant populations.
- 10. The higher value is for hand-harvested crops.
- 11. The first Kc end value is for harvest at high grain moisture. The second Kc end value is for harvest after complete field drying of the grain (to about 18% moisture, wet mass basis).
- 12. If harvested fresh for human consumption. Use Kc end for field maize if the sweet maize is allowed to mature and dry in the field.
- 13. This Kc mid coefficient for hay crops is an overall average Kc mid coefficient that averages Kc for both before and following cuttings. It is applied to the period following the first development period until the beginning of the last late season period of the growing season.
- 14. These Kc coefficients for hay crops represent immediately following cutting; at full cover; and immediately before cutting, respectively. The growing season is described as a series of individual cutting periods (Figure 35).
- 15. Cool season grass varieties include dense stands of bluegrass, ryegrass, and fescue. Warm season varieties include bermuda grass and St. Augustine grass. The 0.95 values for cool season grass represent a 0.06 to 0.08 m mowing height under general turf conditions. Where careful water management is practiced and rapid growth is not required, Kc's for turf can be reduced by 0.10.
- 16. The pineapple plant has very low transpiration because it closes its stomates during the day and opens them during the night. Therefore, the majority of ETc from pineapple is evaporation from the soil. The Kc mid < Kc ini since Kc mid occurs during full ground cover so that soil evaporation is less. Values given assume that 50% of the ground surface is covered by black plastic mulch and that irrigation is by sprinkler. For drip irrigation beneath the plastic mulch, Kc's given can be reduced by 0.10.</p>
- 17. Includes the water requirements of the shade trees.
- 18. These Kc end values represent Kc prior to leaf drop. After leaf drop, Kc end ≈ 0.20 for bare, dry soil or dead ground cover and Kc end ≈ 0.50 to 0.80 for actively growing ground cover (consult Chapter 11).
- 19. Refer to Eq. 94, 97 or 98 and footnotes 21 and 22 for estimating Kc for immature stands.
- 20. Stone fruit category applies to peaches, apricots, pears, plums and pecans.
- 21. These Kc values can be calculated from Eq. 98 for Kc min = 0.15 and Kc full = 0.75, 0.70 and 0.75 for the initial, mid season and end of season periods, and fc eff = fc where fc = fraction of ground covered by tree canopy (e.g., the sun is presumed to be directly overhead). The values listed correspond with those in Doorenbos and Pruitt (1977) and with more recent measurements. The midseason value is lower than initial and ending values due to the effects of stomatal closure during periods of peak ET. For humid and subhumid climates where there is less stomatal control by citrus,

values for Kc ini, Kc mid, and Kc end can be increased by 0.1 - 0.2, following Rogers et al. (1983).

- 22. These Kc values can be calculated as Kc = fc Kc ngc + (1 fc) Kc cover where Kc ngc is the Kc of citrus with no active ground cover (calculated as in footnote 21), Kc cover is the Kc for the active ground cover (0.95), and fc is defined in footnote 21. The values listed correspond with those in Doorenbos and Pruitt (1977) and with more recent measurements. Alternatively, Kc for citrus with active ground cover can be estimated directly from Eq. 98 by setting Kc min = Kc cover. For humid and subhumid climates where there is less stomatal control by citrus, values for Kc ini, Kc mid, and Kc end can be increased by 0.1 0.2, following Rogers et al. (1983). For non-active or only moderately active ground cover (active indicates green and growing ground cover with LAI > about 2 to 3), Kc should be weighted between Kc for no ground cover and Kc for active ground cover, with the weighting based on the "greenness" and approximate leaf area of the ground cover.
- 23. Confers exhibit substantial stomatal control due to reduced aerodynamic resistance. The Kc can easily reduce below the values presented, which represent well-watered conditions for large forests.
- 24. These coefficients represent about 40 to 60% ground cover. Refer to Eq. 98 and footnotes 21 and 22 for estimating Kc for immature stands. In Spain, Pastor and Orgaz (1994) have found the following monthly Kc's for olive orchards having 60% ground cover: 0.50, 0.50, 0.65, 0.60, 0.55, 0.50, 0.45, 0.45, 0.55, 0.60, 0.65, 0.50 for months January through December. These coefficients can be invoked by using Kc ini = 0.65, Kc mid = 0.45, and Kc end = 0.65, with stage lengths = 30, 90, 60 and 90 days, respectively for initial, development, midseason and late season periods, and sing Kc during the winter ("off season") in December to February = 0.50.
- 25. These Kc's are for deep water in temperate latitudes where large temperature changes in the water body occur during the year, and initial and peak period evaporation is low as radiation energy is absorbed into the deep water body. During fall and winter periods (Kc end), heat is released from the water body that increases the evaporation above that for grass. Therefore, Kc mid corresponds to the period when the water body is gaining thermal energy and Kc end when releasing thermal energy. These Kc's should be used with caution.

^a Allen et al., 1998.

Appendix 2. Figures

Figure 1 Field Capacity (Rawls and Brakensiek, 1983; Carsel et al., 2003)

Appendix 3. List of Input Data

AHA: Watershed area (ha) ALF(I): Soil retention parameter (1/cm) DMET: Maximum ET depth in soil (cm) DT: Size of a time step (hr) FC(I): Field capacity (cm^{3}/cm^{3}) ET0(I): Potential evapotranspiration rate (cm/hr) HWT(I): Capillary head (suction) (cm) IMP: Percentage of directly-connected impervious area (%) IU: Index of the UH method (1: SCS UH; 2: Clark UH) KE(I): Effective hydraulic conductivity (cm/hr) KBC(I): Crop coefficient KS(I): Saturated hydraulic conductivity (cm/hr) NC(I): Number of computation cells for each soil layer NL: Number of soil layers NT: Number of time steps QB0: Initial baseflow (m^3/s) RAINS(I): Rainfall intensity (cm/hr) RC: Basin storage coefficient in the Clark UH (hr) **RB:** Baseflow recession constant RTHRE: Threshold value (ratio to the peak) SSMAX: Surface storage capacity (cm) TC: Time of concentration (hr) VN(I): Soil water retention parameter W0(I): Initial volumetric water content (cm³/cm³) WP(I): Wilting point (cm^{3}/cm^{3}) WR(I): Volumetric residual water content (cm^3/cm^3) WS(I): Volumetric saturated water content (cm^3/cm^3) ZNL(I): Thickness of each soil layer (cm)