The ability to manage N nutrition as precisely in organic production as in conventional production is limited by the rate of soil biology to recycle N in organic amendments. The most common approach to providing N is through the use of organic manures and composts.
A variety of products containing microorganisms claim to “help” the degradation of manures and composts and speed the release of N, but these have not been tested by unbiased third parties. Manures and composts contain significant populations of microorganisms that break down manure and composts, so the value of additives to already biologically rich materials is questionable.
Regardless, sampling the manure/compost source and analysis for total N will provide some idea of how much N might be released. In a dryland environment, the activity of microorganisms, amended or not, relies on moisture for decomposition and N release. If the field is irrigated, the release of N will be more constant through the season.
Fresh manure contains more readily available N than composted manure. However, a well-composted manure or compost that has achieved a high temperature during the composting process will result in a much lower weed bank to fight during the year.
Another N strategy is growing an annual legume the season before organic potato production. A substantial soybean/pea or other annual legume crop plowed under (not after harvesting the grain) will provide 100 to 200 pounds of N/acre to the subsequent crop.
Clipping several measured areas of the green manure crop just before termination/incorporation and sending the plant material to a laboratory for total N analysis will provide the total N in the material. Incorporated green manure usually will be able to supply about two-thirds of the total N it accumulated to the next crop.
Manure and compost also will provide significant P, K and micronutrients to the next crop. For supplemental K, surface-mined/skimmed salts of the Great Salt Lake Basin in the U.S. usually are listed as organic sources of potassium sulfate or potassium-magnesium-sulfate. Agricultural limestone to amend pH if necessary also is listed as an organic source, although sugar beet waste lime probably is not. Limestone quarries in southern Minnesota might be utilized to amend acid soils and provide Ca and Mg if needed.
Using NDSU-recommended soil testing methods always is of more value than relying on methods from other states because what NDSU bases its recommendations on was tested and verified in North Dakota.
Many organic growers use the “balanced cation approach” to their detriment. The approach is especially poor in this region due to the presence of soluble salts and carbonates in many of our soils that result in an inflated apparent (but not accurate) cation exchange capacity. As a result, this approach over-recommends the use of some nutrients.
One of the critical management strategies in producing high-yield, high quality potatoes is crop nutrient availability.